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ABSTRACT 

Covering Markov opera tors  are a measu re  theoret ical  general izat ion of bo th  

r a n d o m  walks on groups  and  the  Brownian  mot ion  on covering manifolds.  

In this  general  s e tup  we ob ta in  several  resul ts  on ergodic proper t ies  of  

their  Poisson boundar ies ,  in par t icular ,  t h a t  the  Poisson b o u n d a r y  is al- 

ways infinite if t he  deck group is non-amenable ,  and  t ha t  the  deck group 

act ion on the  Poisson b o u n d a r y  is amenable .  For corecurrent  opera tors  

we show t h a t  the  R a d o n - N i k o d y m  cocycles of  two quot ien ts  of  the  Poisson 

b o u n d a r y  are cohomologous  iff these  quot ien ts  coincide. It implies t ha t  the  

Poisson b o u n d a r y  is e i ther  purely  non-a tomic  or trivial,  and  t ha t  the  ac- 

t ion of any  normal  subgroup  of the  deck group on the  Poisson b o u n d a r y  is 

conservat ive.  We show t h a t  the  Poisson b o u n d a r y  is tr ivial  for any  corecur- 

rent  covering opera tor  wi th  a ni lpotent  (or, more  generally, hypercent ra l )  

deck group.  O the r  appl icat ions  and  examples  are discussed.  

0. I n t r o d u c t i o n  

The classic P o i s s o n  f o r m u l a  giving an integral representation of a bounded 

harmonic function in the unit disk in terms of its boundary values has a long 

history (as it follows from its very name). For an arbi trary Markov operator 

P: L°~(X, m)+-' on a measure space (X, m) one can define its P o i s s o n  b o u n d -  

a r y  as a measurable space F with a h a r m o n i c  m e a s u r e  t y p e  v on it such that  

the space of b o u n d e d  h a r m o n i c  f u n c t i o n s  H ~ ( X , m , P )  = 
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{f • L°~(X,m): P /  = f}  is isometric to the space L~(F ,~ ) .  This corre- 

spondence between functions f • H°~(X, m, P) and their boundary values f" • 

L ~ ( F , v )  has the following property: for any initial probability distribution 

0 -~ m there exists a probability measure u~ -< ~, such that (0, f )  = (v0, f} 

(the generalized Po i sson  formula) .  

This isometry provides a convenient language for describing the space of 

bounded harmonic functions. In particular, absence of bounded harmonic func- 

tions (the Liouvi l le  p r o p e r t y )  is equivalent to triviality of the Poisson bound- 

ary, the space of bounded harmonic functions is finite-dimensional iff the Poisson 

boundary is finite, and atoms in the Poisson boundary are in one-to-one corre- 

spondence with bounded minimal harmonic functions. 

The Poisson boundary describes s t ochas t i ca l l y  s ignif icant  behaviour of the 

corresponding Markov chain at infinity. Unlike the M a r t i n  b o u n d a r y ,  the 

Poisson boundary is defined in measure theoretical terms only (as the space of 

ergodic components of the shift in the unilateral path space of the corresponding 

Markov chain), so that it does not require any topology on the state space. In 

the case when the Martin boundary of the operator P is well defined (or, at 

least, when transition probabilities of the operator P are absolutely continuous 

and the space of pos i t ive  h a r m o n i c  func t i on s  is a simplex [Dy]), the Poisson 

boundary coincides with the Martin boundary considered as a measure space 

with the representing measure of the constant harmonic function. 

Markov operators corresponding to r a n d o m  walks on  g r o u p s  were the first 

large class of Markov operators for which the Poisson boundary was profoundly 

studied (see [Ful], [Fu2], [Fu3], [Gul], [Gu2], [KV], IN3], IN7], IRa]). In this 

situation the Markov operator is invariant with respect to the left action of the 

group on itself, so that the Poisson boundary is also endowed with a natural 

action of the group. The next step was to consider the Poisson boundary of the 

Markov operator corresponding to the Brownian motion on a covering Rieman- 

nain manifold. Here the operator is invariant with respect to the action of the 

deck transformations group of the cover, so that  once again the Poisson boundary 

is endowed with a group action [LS], [K4]. 

Since the Poisson boundary is a measure theoretical construction, it is natu- 

ral to look at the Poisson boundary of covering Riemannian manifolds from a 

measure theoretical point of view. It leads to the notion of a cove r ing  M a r k o v  

o p e r a t o r  ~b. Its state space ()(, ~ )  is a cove r ing  m e a s u r e  space,  i.e., it is 
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endowed with a measure preserving completely dissipative action of a countable 

deck group G, and the operator 15: L~()( ,  ~t)~--' is invariant with respect to the 

action of G. Thus, it defines the quot ient  Markov opera tor  on the quotient 

measure space (X, m) = ()~, Cn)/G. This definition embraces both random walks 

on countable groups and diffusion processes on covering manifolds (or, random 

walks on covering graphs). In the former case the quotient space is a single- 

ton, and the quotient operator is trivial, whereas in the latter case the quotient 

Markov operator corresponds to the Brownian motion on the quotient manifold. 

Invariant Markov operators on Lie groups and their homogeneous spaces can 

also be considered as covering Markov operators with respect to the action of a 

corresponding discrete subgroup. 

The aim of this paper is to carry out consistently the measure theoretical 

approach for studying the Poisson boundary of covering Markov operators. This 

point of view turns out to be quite productive. In particular, we generalize 

and strengthen all results on the Poisson boundaries of covering Riemannian 

manifolds from [LS]. 

The structure of the paper is the following. 

Section 1 is devoted to basic definitions and facts connected with general 

Markov operators and their Poisson boundaries. 

In Section 2 we introduce covering Markov operators and state several basic 

properties of their Poisson boundaries connected with amenabil i ty.  The Poisson 

boundary of any covering operator with a non-amenable deck group is infinite 

(Theorem 2.2.3), and the stabilizer subgroup of a.e. point from the Poisson 

boundary is amenable (Theorem 2.2.4). Proofs of these results make use of 

conditional operators corresponding to the points of the Poisson boundary. Since 

the Poisson boundary can be defined as the Mackey range of a cocycle on the 

path space of the corresponding Markov chain, the action of the deck group on 

the Poisson boundary of a Markov operator is amenable (Theorem 2.3.3). 

In §2.4 we consider corecurrent  Markov operators (i.e., such covering opera- 

tors that their quotient operator is recurrent). For any Markov operator P with a 

stationary measure m one can define its Poisson extension po~ by mutiplying 

the state space of the operator P by the Poisson boundary F(P), so that the 

paths of the Markov chain corresponding to the Poisson extension have the form 

(xn, bnd~), where bnd~ E F is the point of the Poisson boundary corresponding 

to the path ~ = (xn). The operator po~ has invariant measure dm(x)dv,(',/), 
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where v~ is the harmonic measure on the Poisson boundary corresponding to a 

point x. The Poisson boundary of the Poissson extension poo coincides with the 

Poisson boundary of P, and the Poisson boundary of the reversal of po~ coin- 

cides with the product of Poisson boundaries of the operator P and its reversed 

operator (Theorem 1.4.3). The main technical tool used for studying corecurrent 

operators is Theorem 2.4.5: if a covering Markov operator is corecurrent, then 

its Poisson extension is also corecurrent. It immediately implies ergodicity of 

the deck group action on the product of the Poisson boundaries of a corecurrent 

operator and its reversed operator (Theorem 2.4.6). 

In Section 3 we consider corecurrent Markov operators with an absolute conti- 

nuity condition (P): for almost all points x from the state space their harmonic 

measures vx are absolutely continuous with respect to the harmonic measure 

type v on the Poisson boundary (there exists a Poisson  kernel).  This condition 

is, in particular, satisfied for all Harris corecurrent operators. If, in addition, 

almost all measures ux are equ iva len t  to the harmonic measure type v (this 

condition can be considered as a very weak form of the t t a r n a c k  inequa l i ty  a t  

infini ty) ,  then we show that the R a d o n - N i k o d y m  cocycles  on the Poisson 

boundary have the following r ig id i ty  t y p e  p rope r ty :  the cohomology class of 

the Radon-Nikodym cocycle of a G-invariant quotient of the Poisson boundary 

determines this quotient (Theorem 3.2.1). As a corollary we obtain that  condi- 

tional measures corresponding to any two distinct G-invariant partitions ~ -~ ff of 

the Poisson boundary are purely non-atomic (Theorem 3.3.1). Thus, the Poisson 

boundary is either trivial or purely non-atomic, and the action of any normal 

subgroup on the Poisson boundary is conservative (Theorem 3.3.3). So, any fi- 

nite normal subgroup of the deck group acts trivially on the Poisson boundary. 

These results are new even for the Poisson boundary of random walks on dis- 

crete groups. In particular, they explain why non-trivial finite covers connected 

with the Poisson boundary of semi-simple Lie groups [Full can arise only in the 

situation when the corresponding random walk is not irreducible. 

Theorem 3.3.1 implies that the Poisson boundary of a corecurrent covering 

Riemannian manifolds is either trivial or purely non-atomic (--- all minimal har- 

monic functions are unbounded). This property has been already known for 

covers of finite volume manifolds [K4] and leaves of Riemannian foliations with a 

transversally invariant measure [K5] where it was obtained by entropy methods. 

Section 4 is devoted to application of general methods to more concrete sit- 
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uations. In §4.1 we show that the cen te r  of the deck group acts trivially on 

the Poisson boundary of a corecurrent Markov operator P (Theorem 4.1.1). Our 

proof does not use any Harnack type argument, and is based on the uniqueness 

of the stationary measure dCn(x)dvx(7) of the Poisson extension of the opera- 

tor /5. If c E Z(G), then the measure dCn(x)d~,c~('y) is also stationary, which 

implies that  a.e. v~ = vc~, so that the action of c is trivial. By transfinite induc- 

tion it implies triviality of the Poisson boundary for corecurrent operators with 

h y p e r c e n t r a l  (in particular, n i lpo ten t )  deck groups (Theorem 4.1.4). Our 

argument also implies the (well-known) triviality of the Poisson boundary of ran- 

dom walks determined by spread-out probability measures on Lie groups with 

nilpotent lattices. Note that the question about the triviality of the Poisson 

boundary of random walks on such groups determined by an arbitrary singular 

measure (or, more generally, of general corecurrent covering operators with a 

nilpotent deck group) is still open (see [Gul], [Gu2]). 

Another application (§4.2) is to confo rma l  dens i t ies  of  d ive rgence  t y p e  

g roups  of hyperbolic motions. If the critical exponent 5 satisfies the inequality 

5 >_ d/2, then the conformal density is the harmonic measure of a corecurrent 

diffusion process on H d+l , so that  results of Section 3 imply the rigidity of the 

corresponding Radon-Nikodym cocycles (Theorem 4.2.4). In particular, the ac- 

tion of any normal subgroup is conservative with respect to the conformal density. 

For the case 5 = d (i.e., when the quotient manifold Hd+I/G is recurrent) this 

result was earlier obtained by Velling and Matsuzaki [VM]. 

In §4.3 we give simple examples of cotransient covering Markov operators with 

purely atomic Poisson boundary. 

In Section 5 we consider interrelations between general covering operators and 

the simplest possible covering operators which correspond to r a n d o m  walks on 

c o u n t a b l e  groups .  In §5.1 we show that for two classes of corecurrent operators 

(operators on a discrete state space and operators corresponding to di f fus ion 

processes)  their Poisson boundary coincides with the Poisson boundary of an 

appropriate random walk on the deck group, so that the covering operator is in 

a sense approximated by the random walk on the deck group. In the proof we 

use the Furstenberg-Lyons-Sullivan construction of the approximating random 

walk [Fu2], [LS]. 

Considering random walks on groups instead of general corecurrent operators 

makes proofs of results from Sections 2, 3 and 4 much easier. For reader's con- 
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venience we give these proofs in §5.2. Also, looking first at these proofs would 

simplify understanding main ideas of Sections 2, 3 and 4. In view of §5.1, this 

generality is sufficient to deal with the Poisson boundaries of corecurrent diffusion 

processes, so that the reader interested in applications to Riemannian manifolds 

can skip the bulk of the paper and read Section 5 only. 

1. The Poisson boundary 

In this Section we shall introduce the basic notions and definitions connected 

with the (measurable) boundary theory of Markov operators. The main refer- 

ences concerning the general theory of Markov operators are [Fo], [Re] and [Kr]. 

Following [K7], we define the Poisson boundary of a Markov operator as the space 

of ergodic components of the shift in its unilateral path space (see also [Dy], [De] 

for a discussion of the boundary theory). The only non-standard notion intro- 

duced here is that of the Poisson extension P ~  of a Markov operator P (§1.4). 

Its state space is the product of the state space of the original operator and 

its Poisson boundary. The Poisson boundary of the Poisson extension coincides 

with the Poisson boundary of the operator P, and the Poisson boundary of the 

reversed operator P ~  is the product of the Poisson boundaries of the operator 

P and its reversed operator/5 (Theorem 1.4.3). 

1.1 MARKOV OPERATORS 

1.1.1 Definition: A linear operator P: L°~(X,m)~ --~ in a a-finite measure 

space 

(X, m) is called Markov if 

(1) P preserves positivity, i.e., P f  > 0 for any function f _> 0; 

(2) P preserves constants, i.e., P1 = 1 for the function l(x) - 1; 

(3) P is continuous in the sense that Pfn $ 0 a.e. whenever fn ~ 0 a.e. 

1.1.2 The adjoint operator P* of a Markov operator P: L ~ ( X , m ) +  --, acts in 

the space of integrable functions on the space (X, m), or, in other words, in the 

space of measures on X absolutely continuous with respect to m. We shall use 

the notation OP for the measure on X with the density P*(dO/dm), so that 

(OP, f )  = (O, P f )  V f C L°° (X ,m)  . 
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1.1.3 A (a-finite) initial distribution 0 -~ m gives rise to a Markov measure 

0P Z+ in the (unilateral) p a t h  s p a c e  X z+ of the a s s o c i a t e d  M a r k o v  c h a i n  on 

X with o n e - d i m e n s i o n a l  d i s t r i b u t i o n s  OP '~. The u n i l a t e r a l  sh i f t  T + in the 

path  space X z+ acts on the measure 0P ~+ as 

T+(0pZ+) = 0ppZ+ . 

1.1.4 Let 7r~, x • X be the o n e - s t e p  t r a n s i t i o n  p r o b a b i l i t i e s  of the operator 

P. The probability measures ~rx are not necessarily absolutely continuous with 

respect to m, and can be defined for almost all points x • X as conditional 

measures of the measure 0P ~+, where 0 .-~ m is a certain reference probability 

measure on X. [All measure spaces in this paper are assumed to be L e b e s g u e  

spaces ,  so that  the conditional decomposition always exists and is unique (mod 

0) - -  see below §3.1.] In terms of the measures zr~ the operator P has the form 

= f f(y) d~rx(y). Pf(x) 

Definition: A measure m is a s t a t i o n a r y  measure of a Markov operator 1.1.5 

P if 

(Statl)  m P = m ,  

or, equivalently, 

(Stat2) (m, Pf)  = (m,f) V f • L°~(X,m). 

1.1.6 The adjoint operator P* can be extended to a Markov operator 15 in the 

space L°~(X, m) if and only if mP = m. In this situation the operator 15 is called 

the b a c k w a r d  (or, r e v e r s e d )  operator corresponding to the f o r w a r d  operator 

P (with respect to the stat ionary measure m). If P = / 5 ,  then the operator P is 

called r eve r s ib l e .  

Stationarity of the measure m means that  the measure m P  z+ in the pa th  

space X z+ is invariant with respect to the unilateral shift T +, so that  it can 

be naturally extended to a measure mP z in the space of b i l a t e r a l  p a t h s  X z 

invariant with respect to the b i l a t e r a l  sh i f t  T. 

The measure m is also a stat ionary measure of the reversed operator, and the 

bilateral path  space of the opera tor /5  (with the same one-dimensional s tat ionary 
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distribution m) can be obtained from the bilateral path space (X z, mP z) of the 

operator P by the t i m e  r eve r s ion  {xn} H {x_,~}. It reflects the fact that the 

M a r k o v  p r o p e r t y  - -  independence of the future and the past provided the 

present is fixed - -  does not depend on the chosen direction of time, so that the 

time reversal of a Markov measure is also Markov. 

1.1.7 If for almost all points x C X the transition probabilities 7r:~ have densities 

with respect to the measure m 

i.e., 

dTr~ .y) , 
p ( x ,  = ( 

r 
P f ( x )  = ] f (y)p(x ,  y) dm(y) ,  

then the measure m is stationary if and only if f p ( x , y ) d m ( x )  =_ 1, and in this 

case the transition densities/~(., .) of the reversed operator /5  with respect to the 

measure m are given by the formula/~(x, y) = p(y, x). In particular, reversibility 

of P means that  the transition densities p(., .) are symmetric. 

1.1.8 Below we shall need the following elementary fact. 

PROPOSITION: Let P: L°~(X, m)~ -~ be a Markov operator satisfying condition 

(Stat). Then a measure m' -< m is a stationary measure of the reversed operator 

[~ if and only i f  its density ~ = dmJ/dm is a P-harmonic function, i.e., P~  = P. 

Proof: Indeed, stationarity of the measure m' means that 

( m ' , P f )  : (m ' , f )  V f e L ° ° ( X , m ) ,  

i.e., 

so that 

(qo, P f ) m  = (qo, f )m V f C L°° (X ,m)  , 

(P~p,f)m = (~ , f )m  V]  E L ~ ( X , m )  , 

the latter property being equivalent to the equality P ~  = ~. I 
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1.2 THE POISSON BOUNDARY 

1.2.1 Definition: Let P: L ° ° ( X , m ) +  --~ be a Markov operator. The space F = 

F(X, m, P)  of the e r g o d i c  c o m p o n e n t s  of the time shift T + in the unilateral 

path space (X z+, mP z+) is called the Po i s son  b o u n d a r y  of the operator P. De- 

note by bnd:  X z+ --+ F the corresponding quotient map, and by vo = b n d ( o P  z+) 

the h a r m o n i c  m e a s u r e  on F(X, m, P)  corresponding to an initial probability 

distribution 0 -< m. The equivalence class u of harmonic measures vo, 0 ,,, m is 

called the h a r m o n i c  m e a s u r e  class on F. 

1.2.2 By the definition, the space L °~ (F, v) of bounded measurable functions on 

the Poisson boundary is isometric to the subspace of L °° (X ~+, mP ~+) consisting 

of shift-invariant functions. The harmonic measures vo satisfy the identity 

I10 -~ V O p  ~ P "~ ~T~ ~ 

and there is a canonical isometry ] ~ }" between the space 

H ° ° ( X , m , P )  = { f  e L ° ° ( X , m ) :  P f  = f }  

of bounded h a r m o n i c  f u n c t i o n s  of the operator P and the space L °° (F, u) such 

that  

(0, f )  = (~ 'o, / )  V O -< m .  

Thus, triviality of the Poisson boundary ( -  ergodicity of the shift in the unilat- 

eral path space) is equivalent to absence of non-constant bounded P-harmonic 

functions (the Liouvi l le  p r o p e r t y ) .  

1.2.3 Let {vx} be the family of h a r m o n i c  m e a s u r e s  on the Poisson boundary 

F corresponding to points x C X. These measures are defined as conditional 

measures of a fixed reference probability measure vo, 0 ~ m,  and are not neces- 

sarily absolutely continuous with respect to the harmonic measure type u. For 

any probability measure 0 -< m 

y0 = / vx dO(x) ,  

and in terms of the measures vx the Po i s son  f o r m u l a  takes the form 

= } > .  
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1.2.4 A subset A C X is called inva r i an t  for the operator P if the function 

1A is P-harmonic, i.e., PIA = 1A. Invariance of a set A means that A and its 

complement X \ A do not communicate, i.e., the function 1A is constant along 

a.e. path. An arbitrary Markov operator can be (uniquely) decomposed into 

irreducible components by factorizing its state space by the measurable partition 

corresponding to the a-algebra of invariant sets. Thus, below we can without any 

loss of generality assume that the operator P satisfies the following i r reduc ib i l -  

i ty  condition 

(Irr) The operator P has no non-trivial invariant sets. 

1.2.5 The following useful result is essentially the "zero" part of one of the 

Derriennic's 0-2 laws [De], [K7]. 

PROPOSITION: Let P: L°°(X, m)~--" be a Markov operator, and O, O' -< m be two 

probability measures on X .  Then 

Huo uo,[[ lim 1 ~-~( - = 0 - O ' ) p  k . 

n - - * o o n +  l 
k=O 

The Poisson boundary of the operator P is trivial if  and only if  

lim 1 ~-'~(O - O ' ) P  k = 0 
n--+oon+ l 

k=0 

for any two probability measures O, 0' -< m. 

COROLLARY: For a measure 0 on X let [8: P] be the minimal measure type dom- 

inating all the measures OP n, n >_ O, i.e., the measure type of linear combinations 

akOP k, ak > 0 V k >_ O. Then the harmonic measures v0 and vo, are mutually 

singular i~and only if  the measure types [e: P] and [e': P] are. 

1.2.6 As it follows from the isomorphism H°°(X,  m, P) ~- L°°(F, u), the Poisson 

boundary is finite if and only if the space of bounded harmonic functions is finite- 

dimensional. 

We shall say that the Poisson boundary P of a Markov operator P is p u r e l y  

n o n - a t o m i c  if the harmonic measure class u has no atoms, and that it is p u r e l y  

a t o m i c  if the measure class u has no continuous part. Markov operators with 

atoms in the Poisson boundary can be characterized in the following way. 
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A positive harmonic function f of the operator P is called m i n i m a l  if all 

positive harmonic functions dominated by f are multiples of f ,  i.e., 

O <_ f '  = P f '  < f ." '.. 3 C  E [O, 1]: f '  = C f  . 

In particular, triviality of the Poisson boundary (absence of non-constant 

bounded harmonic functions) means that  the constant harmonic function 1 is 

minimal. 

Since the isomorphism H°~(X ,m,  P)  "~ L ~ ( F , y )  preserves positivity, mini- 

mal bounded harmonic functions are in one-to-one correspondence with minimal 

functions from the space L ~¢ (F, v), i.e., with atoms of the measure type ~. This 

correspondence is explicitly given by the formula: 

Thus, we have 

PROPOSITION: 

= 

The Poisson boundary of a Markov operator P: L°~(X ,m)~  -~ 

is purely non-atomic if  and only if  there are no bounded minimal P-harmonic 

functions. 

1.3 THE POISON KERNEL 

1.3.1 Definition: Let P: Lo°(X,m)~ -~ be a Markov operator, and ~, ,~ v - a 

reference probability measure on its Poisson boundary F = F(P) .  A measurable 

non-negative kernel II = II~ on the product X x F is called a P o i s s o n  k e r n e l  if 

for any probability measure 0 -~ m 

? ;  ('7) = / H(x,'7)dO(x) . 

1.3.2 Existence of a Poisson kernel is equivalent to absolute continuity of m- 

almost all harmonic measures v,  with respect to the harmonic measure type y, 

so that  

n ( x , ~ )  = ~ ( ~ ) ,  

and the Poisson formula takes the form 

f(x) = f> = f H(x, 

The Poisson kernel always exists if the operator P has transition densities 

p(., .) with respect to the measure m. In this case v~ = vo -~ v for the measure 

8 = 6xP = p(x, .)m -< m. 
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1.3.3 The functions on X 

duz 

are for u-a.e, point 7 C F minimal (unbounded, unless 7 is an atom) P-harmonic 

functions, hence the Poisson formula gives a representation of a bounded har- 

monic function as an integral of minimal ones. Note that (almost all) minimal 

harmonic functions ~v7 belong to extreme rays of a simplex, so that if a positive 

harmonic function admits a representation as an integral of these functions with 

respect to a certain representing measure, then this representation is unique [Dy]. 

1.3.4 For an initial probability distribution 0 -~ m the formula 

0P g+ = 0P 7 duo(7) 

gives the c o n d i t i o n a l  d e c o m p o s i t i o n  of the measure 0P Z+ with respect to the 

Poisson boundary (i.e., its ergodic decomposit ion with respect to the shift in 

the path space). The conditional measure 0P~ + is a Markov measure in the 

path space of the Markov operator 

P7 = M y  1 p M  7 , 

which is called the D o o b  t r a n s f o r m  of the original operator P (here M 7 is 

the operator of multiplication by ~7)" The initial distribution 07 of the measure 

0P7 z+ is determined by the relation 

dO~ (x) = du~ 

1.3.5 Below alongside with the condition 

(P) The Markov operator P: L°°(X, m)*--" has a Poisson kernel. 

we shall often use a stronger condition 

(P') Almost all harmonic measures ux, x E X of the operator P: L°~(X, m)~---' 
are equivalent to the harmonic measure type u. 

Condition (P') means that the Poisson kernel is almost everywhere positive. 

Note that  condition (P') automatically implies the irreducibility condition (Irr), 

but the converse is not true. 
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1.4 THE POISSON EXTENSION 

1.4.1 Definition: Let P: L ~ ( X , m ) ~  -~ be a Markov operator satisfying condi- 

tion (Stat). Let F = I?(P) be its Poisson boundary, and let X °° = X x F. The 

image of the measure mP z under the map 

= {xn} ~-~ {(x,~,bndh)} 

is a shift-invariant Markov measure on the space (X°°) 7' with the one-dimensional 

distribution 

dm~( x, 7) = dm(x) dux(7), 

which determines a Markov operator P ~ :  L~(X°° ,m~)+ --~ on the space X °° 

with stationary measure m ~ .  The operator P ~  is called the P o i s so n  e x t e n s i o n  

of the operator P. 

Remark: In fact, this notion (in an implicit form) was used by Sullivan [Su] in 

his proof of the equivalence of ergodicity of the geodesic flow on a Riemannian 

manifold of constant negative curvature and recurrence of the Brownian motion 

on this manifold (see also [K10]). 

1.4.2 The operator poo and its reversed operator/5°0 have the following inter- 

pretation: on almost every cross-section X x {7} the operator poo coincides with 

the conditional operator P.~, and the operator poo coincides with the reversed 

operator/5.  In other words, if f~(x) = f(x ,  7), then 

P ~ f ( x ,  7) =PTf~(x) ,  

and 

P°°f(x,  ~/) = PfT(x) .  

1.4.3 Let bndVbe the map assigning to a path 5 from the bilateral path space 

X ~' the corresponding point from the Poisson boundary F of the reversed operator 

t5. Denote by/ ,  the harmonic measure type on the Poisson boundary F, and by v + 

the measure type on the product F × F induced by the map ~ ~ (bnd~5, bndh)  

from the bilateral path space (X z, mPZ). [Warning: the measure type v ± in 

general is not the product of the measure types / ,  and v.] 
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THEOREM: Let P: L ~ ( X , m ) *  -~ be a Markov operator satisfying condition 

(Stat). Then the Poisson boundary of its Poisson extension Poo coincides with 

the Poisson boundary of the operator P, and the Poisson boundary of the reversed 

operator Poo is the product F x F of the Poisson boundaries of the operators P 

and P with the harmonic measure type u +. If, in addition, the operator P sat- 

isfies condition (P'),  then the measure type u + is the product of measure types 

and u. 

Proof: The description of the Poisson boundaries of the operators Poo and/hoo 

immediately follows from the structure of the (common) bilateral pa th  space of 

the operators po~ and/hoo. 

If the operator P satisfies condition (P), then for a given reference probabili ty 

measure v ,~ u the measure m °~ can be presented as 

dm~(  x, 7) = dm(x) dvx(7) = ~---~ (7) dm(x) dr(7)  • 

If P satisfies stronger condition (P~), then the conditional measure of the measure 

m °o on almost every cross-section X x {7} is equivalent to m. Since on the leaf 

X × {7} the operator /hoo coincides with the reversed operator 15, we obtain 

that  for v-a.e. 7 C F conditioning by 7 gives the measure type t) on the cross- 

section F x {7} c F x F. After integrating with respect to the distribution of 7 

(which belongs to the measure type ~,), we obtain that  the measure type v + is 

the product of the measure types ~, and u. 1 

1.4.4 Below we shall also need the following technical result. 

PROPOSITION: Let P: Loo(X, m)~--" be a Markov operator satisfying condition 

(Stat), and let {#x}, x e X be a family of probability measures on the Poisson 

boundary F of the operator P absolutely continuous with respect to the harmonic 

measure type u. Then the measure dtt(x,7) = dm(x)d#~(7) is a stationary 

measure of the operator [:'oo if and only if the densities d#x ~dr (7) are P-harmonic 

functions on X for a.e. 7 E F, where v ,~ u is a reference probability measure on 

F. 

Proo~ The measure tt can be presented as 

d#(x, 7) = din(x) d# , (7  ) = ~ ( 7 )  din(x) d r ( 7 ) .  

Thus, on a.e. cross-section X x (7} it has the density d#, /dv(7)  with respect 

to the measure m. Since the operator Poo coincides with the opera to r /5  on the 
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leaf X × {7}, stationarity of the measure # with respect to the operator 15oo is 

equivalent to stationarity of almost all measures d#~/dv("/)dm(x) with respect 

to the operator /5 ,  the latter being equivalent to P-harmonicity of the densities 

dpx/dv(~) by Proposition 1.1.8. I 

2. Co ve r in g  M a r k o v  o p e r a t o r s  

In this Section we shall introduce the principal object of our study - -  the cov- 

ering Markov operator, which is a Markov operator on a covering measure space 

invariant with respect to its deck transformations group. We state here some 

basic properties of the Poisson boundary of covering Markov operators. We give 

an elementary proof of the fact that the Poisson boundary of a covering operator 

with a non-amenable deck group is always infinite (§2.2) and show that the deck 

group action on the Poisson boundary is always amenable (§2.3). In §2.4 we 

consider corecurrent covering operators. The main technical tool used below is 

Theorem 2.4.5 which shows that the Poisson extension of a corecurrent operator 

is also corecurrent. It implies that for a corecurrent covering operator ~5 the 

action of the deck group on the product of Poisson boundaries of the operator ~5 

and its reversed operator is ergodic (Theorem 2.4.6). 

2.1 COVERING SPACES AND OPERATORS. 

2.1.1 Let ( ) ( , ~ )  be a measure space with a measure preserving c o m p l e t e l y  

d i s s ipa t ive  action of a countable group G. It means that there is a set X ° C )~ 

such that all its translations gX °, g E G are pairwise disjoint, and their union is 

the whole space )(  (mod 0). Then one can identify the quotient space X = X / G  

with the "fundamental domain" X °. For a point x E -~ let g(x) E G be defined 

by the relation x E g(x )X  °, and let ~r(x) = g ( x ) - l x  E X ° be the p r o j e c t i o n  

from -~ onto X ° ---- X. Then the points x E X can be identified with pairs 

(g(x), ~r(x)) E G x X °. Interrelations between the spaces )~, X and X ° are 

illustrated by the following diagram: 

x o  ~ ~ ~ G × X o - ~  X ~- X o . 

By m ° denote the restriction of the measure ~ onto X O, and by m the image 

of m ° with respect to the projection )(  ~ X. We shall say that ()~, ~ )  is a 

cove r ing  m e a s u r e  space  with the deck transformations group G, and (X, m) 

is its q u o t i e n t  space.  
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2.1.2 Definition: A Markov operator P: L~( )~ ,~ )*  --~ on a covering measure 

space (.~, ~t) is a cover ing M a r k o v  o p e r a t o r  if it commutes with the action 

of the deck group G, i.e., 

P(gf)  = g(Pf)  V] e LO°(X, ~n). 

Thus, P acts on the subspace of G-invariant functions in L°~()(, ~ ) ,  i.e., ~5 

determines a quo t i en t  Markov  o p e r a t o r  P: L°~(X, m)~ --~ . 

2.1.3 In the case when the operator fi has transition densities io(', ") with 

respect to the measure ~ ,  transition densities of the quotient operator P are 

given by the formula 

geG 

where x = r(5) and y = 7r(y-). 

One can easily verify that m is a stationary measure of the quotient operator 

P if and only if ~ is a stationary measure of the covering operator ~5. 

2.1.4 If P: L°°(,Y,~)~ -~ is a covering Markov operator, then the deck group G 

acts on the Poisson boundary F = F(fi) (because the coordinate-wise action of 

G on the path space commutes with the time shift), and 

~go = gvo V 0 -~ ~ ,  

so that this action preserves the harmonic measure type ~ on F. The space of 

bounded G-invariant functions on F(~ 5) is isomorphic to the space of bounded G- 

invariant ~5-harmonic functions on ,Y, i.e., to the space of bounded P-harmonic 

functions on X, the latter being isomorphic to the space of bounded measurable 

functions on the Poisson boundary F(P). Thus, we have 

THEOREM: The space of G-ergodic components of the Poisson boundary F(/5) 

of a covering Markov operator/5: LO~()~,~)~= is isomorphic to the Poisson 

boundary o[ the quotient operator P. In particular, the action of the deck group 

G on F(J 5) is ergodic if and only if the operator P is Liouville. 

This theorem permits us to consider in the sequel without any loss of generality 

only the case when the quotient Markov operator P has the Liouville property, 

i.e., its Poisson boundary is trivial. In particular, the quotient operator P can 

be always assumed to satisfy condition (Irr). 
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2.1.5 More generally, if H C G is a normal subgroup of the deck group G, then 

the space of ergodic components F H in F with respect to the action of H admits 

the following interpretation. 

Faetorization of the space ()(, ~ )  by the group H gives a covering measure 

space ()~H, ~H)  with the same base space (X ,m)  and the deck group G/H. 

The covering operator /5 preserves the subspace of H-invariant functions in 

L °¢ (~', ~ ) ,  which means that  it defines a covering operator/3H: L~¢ (.~H, ~H)  ._, 

with the deck group G/H and the same quotient P: L ~ ( X ,  m)* --~ . Since the op- 

erator t 5 can be considered as a covering operator of the operator pH with the 

deck group H, Theorem 2.1.4 implies 

THEOREM: If/~: L ~ ( . ~ , ~ ) *  --~ is a covering Markov operator, and H C G is a 

normal subgroup of the deck group G, then the Poisson boundary of the operator 

~H: LOo(~H, ~nH)~..~ coincides with the space of ergodic components F H of the 

Poisson boundary F of the operator P with respect to the action of H. 

2.2 NON-AMENABLE COVERS. 

2.2.1 Recall that  a countable group G is called a m e n a b l e  if there exists a 

finitely additive, translation invariant probability measure defined for all sub- 

sets of G. According to Reuter~s  cr i ter ion,  amenability of G is equivalent to 

existence of a sequence An of (a-additive) probability measures which strongly 

converges to a (left-invariant) mean on G, i.e., 

(these are just two from a very long list of equivalent definitions - see [Gr], [Paa], 

[Pi]). 

2.2.2 The following result has been known for long time for random walk on 

groups (e.g., see [Fu3], [KV]). For covering operators corresponding to the Brown- 

ian motion on Riemannian manifolds it was proved in [LS] by using a projection 

from the space of all bounded measurable functions on the covering space to the 

space of bounded harmonic functions. Our proof uses a more direct approach 

(a simplified version of that of [KV]). 

THEOREM: Any covering Markov operator with a non-amenable deck transfor- 

mations group has a non-trivial Poisson boundary. 
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Proof'. Suppose that  the Poisson boundary F of the operator l 5 is trivial. Take 

a probability measure 0 -~ m. Then by Proposition 1.2.5 applied to the measures 

0 a n d g 0 ,  g E G 

In other words, if 

then 

n 

Z(O-gO)Pk ~ 0 VgEG. 
n + l  n~oo 

k=O 

On = 1 ~ O p k 
n + l  

k=0 

lie. - go.II  o Vg • c .  

Denote by An the probability measure on G which is the image of the measure 0n 

under the map x ~ g(x) with respect to a fixed fundamental domain X °. Then 

I1 . - gA ll < l ie .  - go.II v g  e c ,  

so that G must be amenable by Reuter's criterion. | 

Theorem 2.2.2 implies the following two generalisations. 

2.2.3 THEOREM: The Poisson boundary of any covering Markov operator with 

a non-amenable deck transformations group is infinite. 

Proof: Suppose that the Poisson boundary F of the operator /3 is finite and 

consists of n atoms. The group G acts on F, hence we have a homomorphism 

~b: G ---* ®~ of the group G to the symmetric group ~n .  Let Go = ker ~. Then 

the group Go is also non-amenable, because it has a finite index in G. 

Consider the conditional operator P'r corresponding to a point 7 E F. Then its 

Poisson boundary is trivial. On the other hand, the operator P'r is Go-invariant, 

and can be considered as a covering operator with the deck transformations group 

Go. Thus, triviality of the Poisson boundary of the operator/3- r contradicts to 

non-amenability of Go by Theorem 2.2.2. | 

Remark: For covering Markov operators corresponding to the Brownian motion 

on regular covers of compact Riemannian manifolds Theorem 2.2.3 was earlier 

proved by Kifer [Ki] (in a rather complicated way) and Toledo [To]. Using the 

notion of the Poisson boundary makes this statement much easier to prove. Note 
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that for regular covers of compact Riemannian manifolds this result readily fol- 

lows from the entropy theory [K4]: in this case the Poisson boundary is either 

trivial or purely non-atomic (for, if it is non-trivial then almost all extreme har- 

monic functions grow exponentially along paths of the corresponding conditional 

process; also see below Corollary 1 of Theorem 3.3.1). 

2.2.3 THEOREM: The stabilizer subgroup 

Stab7 = {g • G:g7 = 7} C G 

is amenable for almost all (with respect to the harmonic measure type) points of 

the Poisson boundary of any covering Markov operator. 

Proof: It uses the same idea as in the proof of Theorem 2.2.3. Let Pv be the 

conditional operator coresponding to a point 7. Then it is Stab~-invariant, so 

that it can be considered as a covering operator with the deck group Stabv. Its 

Poisson boundary is trivial, hence Stabv must be amenable by Theorem 2.2.2. 
| 

2.3 THE POISSON BOUNDARY AS A MACKEY RANGE. 

2.3.1 Let P: L°°()~, ~t)+ --~ be a covering Markov operator satisfying condition 

(Star), and let (~-z, ~pZ)  be the corresponding bilateral path space. The space 

(.~z, mpZ) is endowed with the measure preserving coordinate-wise action of the 

group G and is completely dissipative with respect to this action, so that  it is a 

covering space. Its quotient space ()~z, ~ p Z ) / G  can be described in the following 

way. 

Denote by h~ = g(xn_l)-Xg(x~) the i n c r e m e n t s  of the sequence g(x~), where 

{Xn} = ~ • )~Z. Let ~ be the map from the path space )~z to the space (X x G) z 

of X x G-valued sequences defined as 

[~(~)]n = (~(xn),  h~) • x × G n • z ,  

then 

and the map 

~(g~) = ~(~) v ~ •  2 ,  ~ • G ,  

¢(~)  = (~(z) ,g(x0))  

is a one-to-one correspondence between the spaces )~z and (X x G) z × G. In 

other words, the set {~ 6 )~z: g(xo) = e} = A ° is a fundamental domain for the 
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G-action in the path space .~z. Thus, if A is the image under the map ~ of the 

restriction of the measure ~pZ onto A °, then the measure space ((X x G) z, A) can 

be identified with the quotient space of the covering measure space ()~z mpZ). 

2.3.2 The map ~ intertwines the shift T in the space ~ z  and the shift S in the 

space (X × G) 7", so that 

S~(~) = ~o(T~) V~ E )~z. 

The Z-action {T ~} on )~z commutes with the G-action, and the measure m Pz 

is T-invariant, hence the measure A is S-invariant. Since 

O(T~) -- (~(T~), g((TX)o)) -- (S~(~), g(xl)) = (S~(~), g(xo)hl),  

the Z-action {T n} on the space ()(~, mP z) is the skew produc t  of the Z-action 

{S n} on the space ((X × G) z, A) and the G-valued cocycle a of the group Z 

determined by the function/~ = a(1, .) on (X × G)z: 

f c , ( { T r ( X n ) , h n } )  = h i  . 

2.3.3 In the same way the semigroup Z+-action of the shift T + in the unilateral 

path space ()~z+, ~pZ+) is the skew product of the Z+-action by unilateral shifts 

in the space ((X × G) z+, A+) and the corresponding cocycle a+ of the semigroup 

Z+ (here A+ is the projection of the measure A). By definition, the Poisson 

boundary F(~ 5) of the operator ~5 is the space of Z+-ergodic components in 

()~z, mpZ+), or, in other terms, the Mackey range of the cocycle a+ [Z2], [Sch]. 

Theorem 3.3 from [Z1] and its modification for Z+-cocycles (ibid, Theorem 5.2) 

now imply 

THEOREM: If  t): L°°(f(, Fn)* --~ is a covering Markov operator satisfying condi- 

tion (Stat), then the action of the deck group G on the Poisson boundary of the 

operator P is amenable. 

2.4 CORECURRENT OPERATORS. 

2.4.1 Definition: A Markov operator P: L~(X,m)~ --~ is called recur ren t  

(or, conservative) if it satisfies the following equivalent conditions: 

(Recl) I f f  E L ~ ( X , m ) ,  and P f  <_ f (i.e., f is superharmonic) ,  then P f  = f ,  

and for any t > 0 the set At = {x E X: f (x)  >_ t} is P-invariant; 
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(Rec2) The shift T + in the unilateral path space (X x+, mP x+) is conservat ive ;  

(Rec3) Any set A C X with m(A) > 0 is r ecu r ren t ,  i.e., it is visited infinitely 

often by mPZ+-a.e, unilateral path starting from A. 

In particular, if a Markov operator P: L~°(X, m)+--" is irreducible, then its re- 

currence is equivalent to absence of non-constant bounded superharmonic func- 

tions on X, so that  the Poisson boundary of any irreducible recurrent operator 

is trivial. Another property equivalent to recurrence for irreducible operators is 

that  ~ n  p n f  =_ ~ for any non-negative function ] which is not identically zero 

[Fo], [Kr]. 

2.3.2 PROPOSITION: A Markov operator P: L°°(X,m)~ -~ with stationary 

measure m is irreducible and recurrent if and only ff its reversed operator [~ 

is. 

Proo£" Let A C X be an invariant set of the operator P. Then the function 1A 

is constant along mP~'+-a.e, unilateral path from X z+. Since the measure mP z 

is the bilateral extension of the measure m PZ+, the same is true for mPZ-a.e. 

bilateral path from X z, so that  A is an invariant set of the reversed operator P. 

Conversely, any P-invariant set is P-invariant. Thus, P and /5 have the same 

invariant sets and, in particular, they are irreducible simultaneously. 

Further, conservativity of the unilateral shift T + in the path space 

(X z+, mP z+) is equivalent to conservativity of the bilateral shift T in the space 

(X z, mPZ). Therefore, conservativity of T + is equivalent to conservativity of the 

unilateral shift T -  corresponding to the reversed operator t5. | 

2.3.3 We shall say that  a covering Markov operator P: L°°(.~,~z)~ -~ is 

c o r e c u r r e n t  if the quotient operator P: L°°(X, m)~ -~ is recurrent. 

Recall that  a Markov operator P: L°°(X, m)~ --~ is Ha r r i s  r e c u r r e n t  [Fo], 

[Kr] if it is irreducible, recurrent and there exists n > 0 such that  pn dominates 

a non-trivial integral kernel, i.e., the set of points x E X such that  the n-step 

transition probabilities ~r~ are non-singular with respect to the measure m is not 

negligible. A Harris recurrent operator has a unique (up to a multiplier) a-finite 

stationary measure equivalent to m. 

Let Qn be the absolutely continuous part of the power P'~ (i.e., Qn is the 

maximal integral kernel dominated by P'~). If P is a Harris operator, then 

Q,~I T 1. Thus, for m-a.e, point x E X the total mass of the singular part of 

the transition probabilities r~  tends to zero. If P is the quotient of a covering 
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Markov operator/3: LO~()~, ~t)~-~, then it implies that  the same must be true 

for P, i.e., for ~-a.e. point x E .~ the total mass of the singular part of the 

transition probabilities -n  tends to zero. Thus, for ~-a.e. point x E )( the 71" x 

harmonic measure vx on the Poisson boundary of the operator P is absolutely 

continuous with respect to the harmonic measure type y. So, we have 

PROPOSITION: I f  P :  Lc°( .~ ,  ~ t )~  -~ is a covering Markov operator such that its 

quotient is Harris recurrent, then the operator P satisfies condition (P). 

2.~{.~ Suppose that  ~ is a stationary measure of a covering Markov operator 

/3: L~()~,  ~)+_~ (i.e., m is a stationary measure of the quotient operator P). 

Let )~o = ~ x F(P), and let ~ o :  L~(~oo,~o)+_~ be the Poisson exten- 

sion of the operator P. The measure dCn°°(x, 7) = dCn(x) dye(7) is G-invariant, 

so that the space ()~o, ~oo) is a covering measure space with the deck group 

G. Let (X ~°, m ~°) be the corresponding quotient space. As a measure space, 

(X °°, m ~°) is isomorphic to the product of the quotient space (X, m) and the 

Poisson boundary F(P). The operator ~oo is G-invariant, so that  it determines 

a quotient Markov operator po~ on the space (X °~, m°~). [We are slightly abus- 

ing the notations: the operator poo is not the Poisson extension of the quotient 

operator P.] 

2..~.5 THEOREM: If  P: L~(X,~n)* --" is a corecurrent covering Markov oper- 

ator with an irreducible quotient, then the operator P~:  L°~(X ~,  m°~)~ --~ is 

irreducible and recurrent. 

Proof: First we shall show irreducibility of the operator P ~ .  If there is a 

non-trivial P~-invariant subset A °~ C X °°, then its pullback .~o~ C .~oo is ~Boo_ 

invariant and G-invariant simultaneously. Thus, the set of all paths which re- 

main in ~o~ determines a non-trivial G-invariant subset of the Poisson boundary 

F(P  °°) = F(P),  or, in other words, a non-trivial subset of the Poisson bound- 

ary of the quotient operator P. On the other hand, since P is irreducible and 

recurrent, its Poisson boundary is trivial, which gives a contradiction. 

Now, since poo is irreducible, its recurrence would follow from existence of 

a finite measure recurrent set in its state space. Let A be a subset of X with 

0 < m(A) < c~, and .4 its pullback to X. Put -4~ = .4 x F C .~oo. The set ~oo 

is G-invariant, so that  m°°(A °°) = m(A) < oc for its image A m C X ¢¢. As it 

follows from recurrence of the operator P,  the set A is recurrent, which implies 

that the set A ~° is also recurrent. | 
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2.4.6 THEOREM: Let fi: L°~(X, ~)*--~ be a corecurrent covering Markov oper- 

ator with an irreducible quotient. If the operator ~) satisfies condition (P'), then 

the action of the deck group G on the product of the Poisson boundaries of the 

operator P and the reversed operator P is ergodic with respect to the product 

of corresponding harmonic measure types. 

Proof: The proof uses the fact that the product of the Poisson boundaries of 

the operators j5 and/~ is the Poisson boundary of the reversed operator/~o~, and 
y~ 

that under condition (P~) the harmonic measure type of the operator P¢¢ is the 

product of harmonic measure types of the operators P and/~ (Proposition 1.4.3). 

The quotient po~ of the operator po~ is irreducible and recurrent by Theorem 

2.4.5, so that the action of G is ergodic by Theorem 2.1.4. | 

COROLLARY: /f  the operator P is reversible, then the action of the deck group G 

on the square of its Poisson boundary (with the product measure type) is ergodic. 

Remark: One can easily construct examples of cotransient operators /~ such 

that the G-action on the product of the Poisson boundaries of the operators 

and P is still ergodic (any transient operator P such that both P and /5 are 

Liouville provides a trivial example of this kind). However, these two properties 

(corecurrence of P and G-ergodicity of the product F(P) x F(/~)) turn out to be 

equivalent for a class of Markov operators on hyperbolic spaces [K10]. 

3. Rigidity of Radon-Nikodym cocycles on the Poisson boundary 

In this Section we consider the cohomological properties of the Radon-Nikodym 

cocycles on the Poisson boundary of corecurrent Markov operators, and prove 

the following rigidity type result: the cohomology class of the Radon-Nikodym 

derivatives of a G-invariant quotient of the Poisson boundary determines this 

quotient (Theorem 3.2.1). As a corollary we obtain that conditional measures 

corresponding to any two distinct G-invariant partitions ~ -~ ¢ of the Poisson 

boundary are purely non-atomic (Theorem 3.3.1). Thus, the Poisson boundary 

is either trivial or purely non-atomic, and the action of any normal subgroup on 

the Poisson boundary is conservative (Theorem 3.3.3). In particular, any finite 

normal subgroup of the deck group acts trivially on the Poisson boundary. 
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3.1 MEASURABLE PARTITIONS OF G-SPACES. 

3.1.1 We shall start with recalling some basic definitions from the theory of 

measurable partitions of Lebesgue  spaces  [CFS], [Ro]. 

Let (~2, ~) be a probability Lebesgue space, and ~ - -  its measurable partition. 

We shall denote by 

(a  ~, ~ )  = (a, A)/~ 

the corresponding quo t i en t  probability space which is the image of ~ under the 

map w ~ w ~ assigning to a point w E ~ its equivalence class w ~. 

For objects connected with the quotient space ~2~ we shall use the same no- 

tations as for ~2 with adding the superscript ~. By A ~¢ we shall denote the 

conditional measure of the measure ~ with respect to the partition ~ conditioned 

at the point w ~, so that 

dA(w) = d~(w ~) dA ~°~ (w) , 

or  

(the cond i t iona l  d e c o m p o s i t i o n  of the measure A with respect to the partition 

3.1.2 If/~ is another probability measure absolutely continuous with respect to 

A, then 

~ ( w )  = d#~" ~" '~ ) (1) 

which after integrating by the conditional measure gives that  almost surely 

f d# d#~ (w ~) = --~(w) d~ ~'¢ (w) 
d ~  

In particular, 

d#~ d# 
(w~) = o ~ ~( , , , )  = o (2) dA~ ~Qa .e .  w E ~ . 
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3.1.3 Suppose now that the space (~/,)~) is endowed with a measure type pre- 

serving action of a countable group G. A measurable partition ~ of this space is 

called G-invar iant  if almost surely 

w ~ w' ~ gw ~ gw' Vg E G .  

It means that the corresponding quo t i en t  space (fi~,)~) is endowed with a 

measure type preserving action of G, and the projection w H w~ is G-equivariant. 

A natural class of G-invariant partitions are partitions ~H into e rgodic  com- 

p o n e n t s  of the action of a normal subgroup H C G (if H is not normal then the 

partition ~H is not G-invariant in general). For simplicity of notations, we shall 

use for objects connected with these partitions the superscript H instead of ~H. 

Note that  for a given G-invariant partition ~ of a Lebesgue space (~t, ,k) all 

G-invariant partitions ~ such that ~ ~ ¢ (i.e., ~ is a r e f i n e m e n t  of ~) are in 

one-to-one correspondence with G-invariant partitions of the space Fie. 

3.1.4 Applying formula (1) to the measure # = gA gives the following relation 

between the Radon-Nikodym derivatives of the translations of the measures 

and A~ for a G-invariant measurable partition ~: 

dg)~, , dg A~ , F, dg A~-I'~ 
(3) ~ -  (w) = - ~ ( w - )  dA------~- (w), 

where g)t 9-1~ is the translation by g of the conditional measure )~ 9 - ~  corre- 

sponding to the point g-lw~. 

3.1.5 A positive measurable function 13 on G × fl is called a (multiplicative) 

cocycle  [Sch], [Z2] if almost surely 

~(glg2 ,w)  : ~3(gl,g203) ~(g2,~ ) Vgl,g2 E G. 

Two cocycles ~ and 13 ~ are cohomologous  (equivalent) if there exists a positive 

measurable function ~o on ~ such that  

- • 

If this function ~ is measurable with respect to a partition ~, then we shall say 

that /~ and/?~ are cohomotogous over the corresponding quotient space ~ .  
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3.1.6 If ~ is a G-invariant measurable parti t ion of the space (g~, A), then the 

cocycle 
dg-lA~ 

a~(g,w) - ~ (w~) 

is called the R a d o n - N i k o d y m  cocyc le  of the measure A ~ (it is convenient 

to consider the Radon-Nikodym derivatives as functions on f/ rather  than on 

the quotient space f~¢). By A we shall denote the Radon-Nikodym cocycle of 

the measure A itself. Since Radon-Nikodym cocycles of equivalent measures are 

equivalent, one can speak about the cohomology classes of the measure types 

3.2 RADON-NIKODYM COCYCLES OF THE POISSON BOUNDARY. 

3.2.1 Let now i5: L ~ ( . ~ , ~ ) +  = be a covering Markov operator with the deck 

group G. The Poisson boundary F of the opera tor /5  is endowed with a natural  

G-action which preserves the harmonic measure type u. We shall fix a quasi- 

invariant reference measure u ~ u on F. 

THEOREM: Let P: L ~ ( X ,  £n)~-, be a covering Markov operator satisfying con- 

ditions (P')  and (Stat), and such that its quotient operator satisfies conditions 

(Irr) and (Rec). Let ~ ~ ~ be two G-invariant measurable partitions of the Pois- 

son boundary F of the operator P such that ~ is a refinement of ~ (here G is the 

deck group of the operator P). Then the Radon-Nikodym cocycles Ae and A¢ 

of the measures ue and u~ are cohomologous over the space F¢ if and only the 

partitions ~ and ~ coincide. 

The rest of §3.2 is devoted to a proof of this Theorem. 

3.2.2 For the sake of simplicity we shall consider first the case when ~ is the 

point partition, so that  the quotient space r ¢ coincides with the space F itself. 

Suppose that  the cocycles A and A~ are cohomologous. It  means that  there 

exists a positive measurable function ~ on F such that  

or, in other words, that  almost surely 

dg(~u) ,tmA 
(7 )  = V g E G .  
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Since the operator ~5 has a Poisson kernel, the harmonic measures v, are ab- 

solutely continuous with respect to u for ~-a.e.  x C )(. Hence, the quotient 

measures v~ are also absolutely continuous with respect to the measure u ¢ for 

almost all x E X. 

3.2.3 Let Ax, x E ) f  be the family of probability measures on F determined by 

their densities as 

or, in other words, 

du~ d 2  ('y) = ¢p(',/) -~v~ ("/ ) ,  

dA~ dv~ 
d(~u) (7) = -d~ ("/ ) . 

Note that as it follows from (2), u~ -~ Ax for ~-a.e.  x E X. 

The family A~ is G-invariant in the sense that almost surely Agx = gA~. Indeed, 

and 

whence (because ug~ 

d)~gx du~9~ 
d((pv) (~) = --~v ~('/  ) '  

dgA~ dgv~ 
dg(~u)(7) = d - ~ ( 7  ) ,  

= gux) 

dAg~ dgv~ (^,~) /dg((pu) , , 
d - ~  (.y ) = - - ~  ~ . / d - - ~  ~ ~ j = 1 

dA~ du~ ~ ¢p(,,/) [ dye: .,,/) du 7, 
du (7) = ~o(7) ~-u~ ( 7 )  = j -~u(  (7) 

are /5-harmonic as functions of x for a.e. 7 E F, so that by Proposition 1.4.4 

the measure ~ is a stationary measure of the extended operator poo. Being 

G-invariant, the measure ~ determines a stationary measure A of the quotient 

operator 16oo. Since almost surely yx -~ ~x, the measure A dominates the invari- 

ant measure m °~ of the ope ra to r /5~ .  On the other hand, the operator po~ is 

The densities 

by definition of the function ~. 

3.2.4 Let ~ be a measure on the space )(  x F defined as 

d~(x,'7) = d~n(x) dA,(7) .  
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irreducible and recurrent with respect to the invariant measure m ~ (Theorem 

2.4.5), so that the Radon-Nikodym derivative d#/dA must be equal to a constant 

K > 0 almost everywhere with respect to the measure #, which means that 

dv~ 
dA~ (7) = K 

for 5t-a.e. x E )( and u~-a.e. 7 E F. By definition of the measures A~ the latter 

identity implies that 

dvx dv~ 
(4) du (7) = K ~ ( 7 ) ~ ( 7  ) 

for u~-a.e 7 E F. Note that so far we have used only the condition (P), and not 

its strengthening (P'). 

Now, condition (P') means that the harmonic measure u~ is equivalent to v for 

m-almost all x E .~. Thus, relation (4) holds for almost all x C )~ and v-almost 

all 7 E F. It means that the (minimal) harmonic functions corresponding to any 

two points 7, 7 r with the same image 7 ~ are proportional, so that  7 = 7 ~. Hence, 

the partition ~ is the point partition, and the space P~ coincides with I'. 

3.2.5 The general case can be treated along the same lines with replacing the 

extended operator ~5oo on the space J( × F with the analogous operator on the 

space )( x F ~. It leads to the identity 

(7) = K~(7)~-v-~ (7 ~) du; 

analogous to (4). Thus, if 7~ = 72 ~, then the 15-harmonic functions du~/du;(7~t) 

and du~/dv;(7~) are proportional, which is only possible if 7~ = 7~ (recall that  

points from F ~ are in one-to-one correspondence with functions du~/du((7~), 

because the minimal functions dv~/du(7) span a simplex). 

3.3 ACTIONS ON THE POISSON BOUNDARY. 

3.3.1 THEOREM: Let ~): L°~(,Y, Cn)* -" be a covering Markov operator satis- 

fying conditions (P') and (Stat), and such that its quotient operator satisfies 

conditions (Irr) and (Rec). H ~ -~ ~ are two distinct G-invariant measurable 

partitions of the Poisson boundary F(/5), then almost all conditional measures 

corresponding to the projection F; ~ F ~ are purely non-atomic. 

Proof Once again for the sake of notational simplicity we shall consider only 

the case when ( is the point partition if the space F. Let 

A = {7 E F: u "~¢(7) > O} 
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be the subset of F consisting of all points ~/which are atoms of the corresponding 

conditional measures. As it follows from (3), the set A is G-invariant. On the 

other hand, the G-action on F is ergodic by Theorem 2.1.4, so that the set A 

is either empty, or coincides with the whole space F (mod 0). In other words, 

almost all conditional measures ~ are either purely non-atomic or purely atomic 

simultaneously. Suppose that they are purely atomic. Then the function 

= 

is almost surely non-zero, and, as it follows from (3), it states an equivalence 

between the Radon-Nikodym cocycles A and A~, which by Theorem 3.2.1 is 

only possible if ~ is the point partition. | 

COROLLARY 1: The Poisson boundary F and any its G-equivariant measurable 

quotient are either trivial of purely non-atomic. 

COROLLARY 2: Let ~ be a G-invariant measurable partition of the Poisson 

boundary F. Then for any non-trivial G-invariant partition of the quotient F ~ 

its elements are almost surely uncountable. 

COROLLARY 3: The action of any finite normal subgroup H C G on the Poisson 

boundary F is trivial. 

Proof'. Let ~H be the partition of the Poisson boundary into ergodic components 

of the action of H. Since H is finite, the elements of this partition are H-orbits 

in F. These orbits being finite, ~H must be the point partition by Theorem 3.3.1, 

so that H~ = -y for a.e. "y E F. | 

COROLLARY 4: If the group G is generated by its finite normal subgroups, then 

the Poisson boundary F is trivial. 

Remark: Normality condition is essential in Corollaries 3 and 4 as it can be seen 

from examples of non-trivial Poisson boundaries for locally finite groups [K2] and 

for free products of finite groups [K3]. 

3.3.2 A group G is called hyperf in l te  if every homomorphic image G r ~ (1) 

of G has a normal finite subgroup H ~ (1). The class of hyperfinite groups is 

contained in the class of locally finite groups [KW], [Rob]. 
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THEOREM: Let P: L°°(X, ~n)+ -~ be a covering Markov operator satisfying con- 

ditions (P') and (Stat), and such that its quotient operator satisfies conditions 

(Irr) and (Rec). I f  H is a hyperfinite normal subgroup of the deck transforma- 

tions group G, then its action on the Poisson boundary F of the operator P is 

trivial. In particular, if G is hyperfinite, then F is trivial. 

Proof: If H is a finite normal subgroup of G, then by Corollary 3 of Theorem 

3.3.1 and by Theorem 2.1.5 the Poisson boundary of the operator P coincides 

with the Poisson boundary of the operator p H  with the same quotient operator 

and with the deck group G/H. Now one can take a finite normal subgroup of the 

group G/H, etc. Thus, transfinite induction gives the desired statement. | 

COROLLARY: The Poisson boundary of the operator P coincides with the Poisson 

boundary of the operator ~H. 

3.3.3 Recall that a measure type preserving action of a group H on a measure 

space (~, A) is called conse rva t i ve  if it has no non-trivial w a n d e r i n g  sets, i.e., 

such measurable sets A C ~ that all their translations gA, g c H are mutually 

disjoint (mod 0). If A is a non-trivial wandering set, then the set 

~tA = U gA 
gEH 

is obviously H-invariant, and the ergodic components of the H-action on •A are 

H-orbits (in particular, they are countable). Thus, we have 

THEOREM: Let P: L~(.~,  ~n)~ -~ be a covering Markov operator satisfying con- 

ditions (P') and (Stat), and such that its quotient operator satisfes conditions 

(Irr) and (Rec). Then the action of any normal subgroup of the deck group G 

on the Poisson boundary of the operator P is conservative. 

3.3.4. Remarks: 1. Quotients of the Poisson boundary of a random walk (G, it) 

are known as i t -boundar ies  (or, F u r s t e n b e r g  b o u n d a r i e s )  of the random 

walk, and the fact that they are either trivial or non-atomic is well-known [Fu2], 

[K3]. 

2. For regular covers of compact Riemannian manifolds Corollary 1 of Theorem 

3.3.1 follows from the entropy theory [K4] (see Remark 2.2.3). In that particular 

case it was also later proved by Toledo [To] with an argument including a reference 

to the Tits' theorem on subgroups of linear groups. 
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3. An example of a G-invariant partition of the Poisson boundary which does 

not correspond to any normal subgroup of the deck group G is given by the group 

G = SL(n, Z) (or, more generally, any lattice in a semi-simple real Lie group of 

rank _> 2). Let )~ = SL(n, •)/SO(n, R) be the corresponding symmetric space, 

and ~ - -  the Riemannian volume on )~. Then the space ()(, ~ )  is a covering 

space, and the Brownian motion on )( determines a covering Markov operator 

on )(. Its Poisson boundary coincides with the space of full flags in ]~'~, the 

harmonic measure type being the smooth measure type [Ful], [Ka]. Any space 

of non-complete flags is a G-equivariant quotient of the Poisson boundary which 

does not correspond to any normal subgroup of G (they are all either finite or 

have a finite index in G). In fact, in this situation there are no G-equivariant 

quotients of the Poisson boundary others than the flag spaces [Ma]. 

4. The condition that H is a n o r m a l  subgroup is essential in Theorem 3.3.3. 

For example, let G = Z * Z be the free group with 2 generators a, b. Then for 

a large class of probability measures # on G (including all finitely supported 

measures) the Poisson boundary F of the random walk (G, p) can be identified 

with the set of infinite irreducible words in the alphabet {a, b, a -1, b -1} with the 

corresponding harmonic measure [K3], [K9]. Thus, the action of the free factor 

Z ~ {a"} on F is free and completely dissipative, the corresponding ergodic 

components being infinite irreducible words which begin with either b or b -1. 

4. Applications and examples 

This Section is devoted to application of general methods developed above to 

more concrete situations. In §4.1 we use the fact that the Poisson extension 

of a corecurrent covering operator j5 is also corecurrent (hence, it has a unique 

stationary measure) to show that the center of the deck group acts trivially on 

the Poisson boundary of the operator ~5 (Theorem 4.1.1). By transfinite in- 

duction it implies triviality of the Poisson boundary for corecurrent operators 

with hypercentral (in particular, nilpotent) deck groups (Theorem 4.1.4). An- 

other application (§4.2) is to conformal densities of divergence type groups of 

hyperbolic motions. If the critical exponent 5 satisfies the inequality 5 > d/2, 
then the conformal density is the harmonic measure of a corecurrent diffusion 

process on H d+l, so that results of Section 3 imply the rigidity of the corre- 

sponding Radon-Nikodym cocycles (Theorem 4.2.4). In particular, the action 

of any normal subgroup is conservative with respect to the conformal density. 



108 V. KAIMANOVICH Isr. J. Math. 

In §4.3 we give simple examples of cotransient covering Markov operators with 

purely atomic Poisson boundary. 

4.1 NILPOTENT COVERS. 

4.1. i Recall that  the c e n t e r  Z(G) of a group G is the set of all such elements 

c E G which commute with any element 9 E G (i.e., cg = gc Vg E G). The center 

is obviously a normal subgroup of G. 

THEOREM: Let P: L°°(X,  Cn)~ -~ be a covering Markov operator satisfying con- 

ditions (P) and (Stat), and such that its quotient operator satisfies conditions 

(Irr) and (Rec). Then for any element c from the center Z = Z(G)  of the deck 

group G the following two conditions are equivalent: 

(1) The action of c on the Poisson boundary F of the operator P is trivial, i.e., 

c7 = "f for u-a.e. 7 E F; 

(2) The set {x E X: vx J- vex} has non-zero measure fit. 

Proof" Clearly, if the harmonic measures vx and vc, = cv, are singular, then 

c7 ~ 7 for v~-a.e. 3' E F, so that we have to prove only the implication (2) =~ (1). 

Let ~ be a measure on the space )~ x F defined as 

d~c(X, 7) = d~n(x) dye=(7) = d~n(x) dcv=(7) = d~n(x) dvz(c-17) . 

In particular, if c = e, then the measure ~ coincides with the invariant mea- 

sure fit ~ o f  the extended Markov operator P¢¢ on the space _~ × F (see Defini- 

tion 1.4.1). We shall show that  for any c E Z the measure ~ is a G-invariant 

stationary measure of the operator po% 

Let v be a reference probability measure on the Poisson boundary F of the 

operator P. Then for a.e. ~t E F the density 

dye= dcvx dct~ ddv1~ (c_ 1,.,/) dcv (7) 

is/3-harmonic, and the measure ~c is a stationary measure of the operator/~o~ 

by Proposition 1.4.4. 

On the other hand, the measure fit being G-invariant, for any g E G 

dg~tc(x, 7) = d'fic(g - i x ,  g-17)  = dm(g-1x)dvcg-,=(g-17) 

= d~n(x)dr,g-,~=(g-17) 

= d~n(x)dt%=(7) = d~t~(x, 7 ) .  
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Thus, after factorization with respect to the G-action, the measure ~c deter- 

mines a stationary measure Pc of the opera tor /~o.  Condition (2) means that  

the measures ~ and ~c are non-singular, hence the measures m ~ and #c are 

also non-singular. Since m ~ is a stationary measure of the irreducible recurrent 

operator /5~,  this can only happen when m °~ ~ Pc and the Rad0n-Nikodym de- 

rivative d m ~ / d p c  equals a.e. to a constant K > 0. By definition of the measure 

/~c it means that  v~ -< vc~ for ~-a.e. x C -~, and du~:/dvc~("/) = K for v~-a.e. 

7 E F .  
The same argument applied to the measure #c-1 shows that  almost surely 

v~ -~ vc-l~, in other words, vc~ -~ v~. Since ~ are probability measures, the 

constant K must be 1, so that  v~ = vex for ~-a.e. x E X. Thus, the minimal 

harmonic functions dv~:/dv('7) and 

are proportional, so that they correspond to the same point 7 = c - l ~ /  of the 

Poisson boundary. | 

4.1.2 We shall say that  a subgorup H of the deck transformations group G of a 

covering Markov operator/5: L ~ ( ~ ,  ~)¢__, is non-s ingu la r  if for ~-a.e. point 

x E X the harmonic measures us and vgx are non-singular for all g E H. 

Remark: If the operator/5 has transition densities, then non-singularity of har- 

monic measures v~ and vgx is equivalent to non-singularity of the measure types 

[~f~: /5] and [Sgx: /5]. In the general case, if the absolutely continuous parts of 

measure types [~f~:/5] and [~f9~:/5] are non-singular, then the harmonic measures 

v~ and vg~ are obviously also non-singular. On the other hand, singularity of 

measure types [~f~: /5] and [Sg~: /5] does not necessarily implies singularity of 

the harmonic measures v~ and vg~ (even being singular, these measure types are 

not necessarily separated by harmonic functions). For example, let ()~, ~ )  be 

the real line with the Lebesgue measure on it, and the group G = Z acts on 

by translations x ~ x ÷ n. For an irrational number a the covering opera- 

t o r / s f ( x )  = [f(x + a) + f ( x  - a)]/2 has trivial Poisson boundary, whereas the 

measure types [~f~:/5] and [~f~+1:/5] are singular for all x E R- 

Theorem 4.1.1 implies 

THEOREM: Let/5:  Lc~(X, Cn)~-" be a covering Markov operator satisfying con- 

ditions (P) and (Star), and such that  its quotient operator satisfies conditions 
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(Irr) and (Rec). I f  the center Z of the group G is non-singular with respect to 

the operator ~5, then the action of Z on the Poisson boundary r of the operator 

is trivial, and the Poisson boundary of the operator P coincides with the Pois- 

son boundary of the operator ~ z .  In particular, if the group G is abelian and 

non-singular, then the Poisson boundary F is trivial. 

4.1.3 Let 

G = Go --+ G1--+ ... 

be the sequence of quotients of the group G defined inductively as 

Gn+l = G n / Z ( a n ) ,  

with Z(Gn) being the center of the group Gn. In other words, 

where 

Gn = a / z n  , 

{e} = Z0 c Z1 c . . .  

is the u p p e r  cen t ra l  series of the group G. Transfinite iteration of this con- 

struction gives the t r ans f in i t e  u p p e r  series {Z~ } of the group G. The terminal 

member H of the transfinite upper series is called the h y p e r c e n t e r  of the group 

G. The group G is called n i l po t en t  if there exists a finite number n such that 

Zn = G, it is called w-ni lpotent  if Z~ = U zn = G (here w is the first infi- 

nite ordinal), and it is called hypercentral if it coincides with its hypercenter H. 

Equivalently, a group G is hypercentral if every homomorphic image G I ~ (1 / 

of G has a non-trivial center. Every hypercentrat group is locally nilpotent, so 

that  within the class of finitely generated groups hypercentrality is equivalent to 

nilpotency [KW], [Rob]. 

3.1.4 Transfinite induction applied to the transfinite upper series of the group 

G by Theorem 4.1.2 gives 

THEOREM: Let P: L ~ ( X,  Cn )*-, be a covering Markov operator satisfying condi- 

tions (P) and (Stat), and such that its quotient operator satisfies conditions (Irr) 

and (Rec). I[ the hypercenter H of the group G is non-singular with respect to 

the operator P, then the action o[ H on the Poisson boundary F of the operator 

is trivial, and the Poisson boundaries of the operators P and ~H coincide. In 

particular, if G is hypercentral and non-singular, then the Poisson boundary F is 

trivial 
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4.1.5 One can go a little bit further by combining Theorem 4.1.2 with Theorem 

3.3.2. We shall say that a group G is hyper - f in i t e -o r -cen t ra l  if every homo- 

morphic image G ~ ~ (1) of G either has a non-trivial center or has a normal finite 

subgroup H ~ (1/. A finitely generated hyper-finite-or-central group is a finite 

extension of a nilpotent group (cf. [Rob]). 

THEOREM: Let P: L ~ ( X ,  ~n)*--" be a covering Markov operator satis[ying con- 

ditions (P') and (Stat), and such that its quotient operator satisfies conditions 

(Irr) and (Rec). If  H is a hyper-finite-or-central normal subgroup of G, then its 

action on the Poisson boundary F of the operator P is trivial, and the Poisson 

boundaries of the operators P and ~t /  coincide. In particular, if G is hyper- 

finite-or-central, then F is trivial. 

Remark: For regular covers of recurrent Riemannian manifolds Theorem 4.1.4 

was proved in [LS] by using the Harnack inequality (in fact, in [LS] it is stated for 

w-nilpotent covers only). Our proof uses a much milder condition (equivalence 

of harmonic measures on the Poisson boundary), which can be considered as a 

(very weak) form of the Harnack inequality at infinity. See §5.2 for a discussion of 

Theorem 4.1.4. in the case of random walks on groups. There is also a completely 

different approach to proving the Liouville theorem for nilpotent covers due to 

Lin Jail. 

4 .2  CONFORMAL DENSITIES OF DIVERGENCE TYPE GROUPS. 

4.2.1 The results obtained above for corecurrent operators can be also applied 

to covering operators with so-called A-recurrent  quotients. Let P: L ~ ( X, m)<---' 

be a Markov operator. For a number t > 0 let 

pn 
Gt = (t - P ) - :  = Z t - + l  

nm0 

be the corresponding G r e e n  ope ra to r .  The number 

A = A(P) = sup{t > 0: GtlA -- cc VA  C X: m(A) > 0} 

is called the convergence  n o r m  of the operator P. The number A(P) can be 

also characterized as the infimum of all numbers r > 0 such that  there exists 

a non-zero non-negative r - s u p e r h a r m o n i c  function, i.e., such function f that  

P f  < r f .  
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If 

G~IA =-- co VA C X: m(A) > O, 

then the operator P is called A-recurrent. For an irreducible A-recurrent operator 

P there exists a unique (up to a multiplier) non-negative A-harmonic function ~, 

and the Doob transform of the operator P corresponding to the function 

1 -1 P~ = -~M~ PM~ 

is recurrent (here M~, is the operator of multiplication by ~) [Tw]. 

4.2.2 Let now /~: L~()(,fft)* --~ be a covering Markov operator such that its 

quotient operator P: L°°(X, m)~---, is A-recurrent and irreducible. Denote by 

the (unique) A-harmonic function of the operator P, and by ~ its lift to )(. Then 

the operator P~ is the quotient operator of a corecurrent covering operator ~ .  

The Poisson boundary F(P~) of the operator P~ can be identified with the space 

A/I(P, A) of minimal A-harmonic functions of the operator P. The harmonic 

measure ~0 corresponding to an initial distribution 0 is the representing measure 

of the function ~ (normalized in such a way that (0, ~} = 1) in its decomposition 

into an integral of minimal A-harmonic functions (with the same normalization 

condition). We shall denote by u~ the corresponding harmonic measure type, 

i.e., the common measure type of the measures ~0 with 0 ~ gt. 

Suppose that the operator /3~ satisfies condition (P'). Then the results of 

previous Sections on the ergodic properties of the Poisson boundary of a core- 

current operator arc applicable to the action of the deck group G on the space 

(M(F ,  A), ~ ) .  

,~.2.3 Let us now recall some basic definitions concerning groups of isometrics 

of hyperbolic spaces and conformal densities on their limit sets [N], [Pas], [Su]. 

Let G be a properly discontinuous group group of isometries of the hyperbolic 

space H d+l (i.e., H d+l is a simply connected Riemannian manifold of dimension 

d+  1 with constant curvature -1).  For convenience we shall fix a reference point 

o E H ~+1 • The number 

8 = ~(G) = inf{a > 0: ~ e -'~dist(°'g°) < 0o} 
gGG 

is called the critical exponen t  of the group G, and the group G is said to be 

of divergence t y p e  if 
~ e-8 dist(o,go) --- O0 

gGG 
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(here dist(-, .) is the Riemannian distance on Hd+I). The critical exponent 5 al- 

ways satisfies the inequality 5 _< d, and ~ > 0 for all non-elementary groups. The 

sphere S d can be identified with the boundary of a natural v is ib i l i ty  compact- 

ification of the space H d+l . In particular, it is endowed with an induced action 

of G. The closure in H d+l U S n of the orbit Go is called the l imi t  se t  of the 

group G. A probability measure c~ on the limit set A is a c o n f o r m a l  d e n s i t y  of 

dimension ce of the group G if it is quasi-invariant with respect to the action of 

G, and 

~ ( 7 ) =  V g E G ,  T E A ,  e-c~b.r(go) 

where b~ is the B u s e m a n n  f u n c t i o n  of a point "y E S d with respect to the 

reference point o. There always exists a conformal density of dimension ~(G), 

and if the group G is of divergence type, then such conformal density is unique. 

The Busemann function bT, 7 E S d Oil ][.~d+l is defined as 

= lim [d i s t ( x ,~ ( t ) ) - t l ,  by(x) 
t - ~  o o  - / 

where ~7 is the geodesic ray o n  ~.~d+l issued from o in the direction 7- Let 

mx, x E H d+l be the (unique) probability measure on S n invariant with respect 

to all isometries of H d+l which fix the point x (i.e., m ,  is the image of the 

Lebesgue measure on the sphere of the tangent space at x under the map assigning 

to a tangent vector the limit point of the corresponding geodesic). Then 

drnx e - d b 7  ( x )  

dmo ('~ ) = 

The Poisson boundary of the Brownian motion on H d+l can be identified with 

S n, the harmonic measure of a point x E H d+l being m~. Thus, e -db , (x )  is the 

Poisson kernel of the corresponding Markov operator with respect to the measure 

m o • 

4.2.4{ THEOREM: Let G be a properly discontinuous divergence type group of 

isometries of the hyperbolic space H d+l with the critical exponent 6 >_ d/2, 

and let a be the corresponding conformal density on the limit set A. Then the 

measure space (A, a) has the following property: for any two distinct G-invariant 

partitions ~ -~ ~ their Radon-Nikodym cocycles are not cohomologous over the 

space (A ¢, a¢ ). In particular, almost all conditional measures corresponding to 

the projection A ¢ ~ A ~ are purely non-atomic. 
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Proof: First of all recall that  the functions e -c~b'~ are eigenfunctions of the 

Laplace operator A on H d+l with the eigenvalue -c~(d-a ) ,  and they are minimal 

if d/2 < a _< d. The operator A is the generating operator of the Brownian 

motion on IS d+l with the time 1 Markov transition operator ~5 = e7,. 

Thus, the function 

= j e 

is a e-~-harmonic function of the operator iS, where A = )~(5) = 5(d - 5). The 

function ~ is G-invariant, because 

so that 

~ ( g - l x )  -~ . f  e-6b'~(g-lx) da("/ ) 

--- f e -5[bg~(x)-bg"~(g°)l da("/ ) 
t ]  

dga(g'T) 

= / e -~bg~(~) da(gT) = ~(x) .  

Hence, ~ is the lift of a e-X-harmonic function ~ of the quotient operator P = e/' 

(here A is the Laplacian on the quotient manifold H d+l/G).  

On the other hand, the Green function Gx(x, y) of the operator - A  has the 

asymptotic 

GA (x, y) ~ e -  ( ~ + ~ )  dist(x,y) 

when dist(x, y) -~ co. In particular, for a > d 
- -  2 

G~(d-~) (x, y) ,,~ e -~ dist(x,y) . 

Since the Green function of the operator A is obtained from the Green function 

of the operator A by the formula 

c x ( x , y )  = 

g~_G 

where x, y are projections of points ~, ~ from H d+l onto the quotient manifold 

H d+l/G, it means that  the convergence norm of the Markov operator P = e - a  

is e -5(d-5), and it is e-6(d-~)-recurrent. 
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Now we can apply Theorem 3.2.1 to the covering corecurrent operator 

= e6(d-~)M=l/~M~. | 

COROLLARY 1: Any non-trivial G-equivariant measurable quotient of the space 

(A, a) is purely non-atomic. 

COROLLARY 2: The action of any normal subgroup of the group G on the space 

(A, a) is conservative. 

4.2.5 Remarks: 1. The statement of Corollary 1 is well known for the space 

(A, a) itself (conformal density of divergence type groups does not have atoms). 

2. For the case when 5 = d (i.e., when the manifold H d+l /G is recurrent) the 

statement of Corollary 2 was proved by Veiling and Matsuzaki [VM] (see also 

[Ta], IV]). 

3. The assumption 5 >__ d/2 is essential in our proof of Theorem 4.2.4 (as it 

was already pointed out by Sullivan [Su], the probability methods do not readily 

apply to the case when 6 < d/2). It would be interesting to find out whether 

Theorem 4.2.4 is true in this case as well. 

4. The operator ~ is the time 1 transition operator of the diffusion process 

on H d+l with the generating operator 

log  = Mz' M  + 6)I = + 2Vlog  

where A is the Laplace operator on H d+l , and I is the identity operator. Thus, 

Theorem 5.1.6 shows that  for 5 >_ d/2 there exists a probability measure/~ on 

G such that  the conformal density a coincides with the harmonic measure of 

the random walk (G,/t), so that Theorem 4.2.4 can be deduced from results of 

§5.2 on Poisson boundaries of random walks without making recourse to general 

results from Section 3. 

4.3 COTRANSIENT OPERATORS. 

4.3.1 We shall say that  a covering Markov operator P: L ~ ( ) ( , ~ ) ~  -~ is 

co t r ans i en t  if its quotient operator P is transient. We shall give here simple 

examples which show that  for cotransient covering operators the Poisson bound- 

ary of the covering chain can be purely atomic non-trivial for an arbitrary deck 

transformation group G. In particular, for a non-amenable G it means that  the 
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Poisson boundary for covering chains can be "smaller" (atomic vs. purely non- 

atomic) in cotransient case than in the corecurrent case, although the quotient 

state space is in a sense "larger" in the cotransient case. 

4.3.2 Definition: A covering Markov operator P: L~( )~ ,~)*  --~ is a l mo s t  

d is jo in t  if there exists a subset Xd C )( such that 

(a) All translations gXd, g E G are mutually disjoint (mod 0); 

(b) The set )(t = )~ \ U gXd is transient for the operator P; 

(c) If f E L ~ ( X ,  ~ )  is a function supported by the set Xd, then P f  - 0 on 

all sets gXd, g E G \{e}.  

In other words, the operator ~5: L~()~, ~).__~ is almost disjoint if the corre- 

sponding Markov chain can get from glXd to g2Xd, gl ~ g2 only by passing 

through the transient set )~t- Clearly, any almost disjoint covering operator is 

cotransient. 

4.3.3 THEOREM: The action of the deck transformations group G on the Pois- 

son boundary F(P) of an almost disjoint covering Markov operator P: L~(  2 ,  ~n) 

*-~ is completely dissipative. In particular, if the Poisson boundary F(P) of the 

quotient operator is trivial, then F(P) coincides with the group G. 

Proof: By Theorem 2.1.4 it is sufficient to consider only the case when the 

Poisson boundary F(P) of the quotient operator P is trivial, and to show that 

in this case the Poisson boundary of the covering operator can be identified with 

G. Take a reference measure 0 --, ~ on )(. Since the operator P is almost 

disjoint, for a.e. path • = {x~) there exists g = g(~) E G such that xn E gXd 

for all sufficiently large n. Since the measure ~ on )( is G-quasi-invariant, the 

distribution of g ({xn}) is also quasi-invariant, i.e., is equivalent to the counting 

measure mG. The fact that G coincides with the whole Poisson boundary of the 

operator ~5 follows from triviality of the Poisson boundary of the operator P. 

I 

4.3.4 We shall give now a simple example of an almost disjoint covering Markov 

chain (similar to an example from [PWl]). 

Example: Let P: L~(X ,  m)* --~ be a transient Markov operator on a countable 

state space X with transition probabilities (p(x,y): x ,y  E X} (here m is the 

counting measure on X). Let o E X be a state such that  p(o, o) = e > 0. Take a 

discrete group G with a probability measure tt on it and consider a new Markov 
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operator/5 with the state space G x X and transition probabilities ~'(.,-) defined 

as: 

~((9, x), (9, y)) --- p(x, y),  x ~ o,  

~((g, o), (9, y)) -- p(o, ~),  u g o,  

~((9, o), (gh, o)) -- ~ ( h ) ,  h e c .  

One can visualize the state space G x X in the following way: for each g C G 

there is a copy X 9 = {g} × X of the state space X "sticking out" of the point 

(g, o), so that  one can pass from one copy to another only by passing through 

the "stem" (g, o) E Xg. The operator j5 is an almost disjoint covering operator 

of the operator P. 

4.3.5 The next example shows that there exist covering cotransient operators 

such that  their Poisson boundary has both countable and continious G-ergodic 

components. It is obtained by combining the product of the underlying chain and 

a random walk on the deck group (which gives continuous ergodic components) 

with the construction from Example 4.3.4. 

Example: Let P be a transient Markov operator with a countable state space 

X. Suppose that there exists a state o E X such that  X \{o}  can be divided 

into two subsets X_, X+ with the property that 

p(x,y)=O V(x,y) EX_ ×X+UX+ ×X_.  

In other words, one can get from X_ to X+ or from X+ to X_ only by passing 

through o. Suppose, further, that  the probabilities of escaping to infinity staying 

in X_ (resp., in X+) are both positive. Denote by F_ and F+ the corresponding 

subsets of the Poisson boundary of the operator P. 

Take a disrete group G with a probability measure # and define a new operator 

/5 with the state space G × X and transition probabilities io(', "): 

~((g, x), (g, y)) = p(x, ~), 

~( (g, o), (g, y) ) = p(o, ~) , 

~((g, o), (gh, y)) = ~(h) p(o, ~), 

~((g, x), (gh, y)) = ~(h)p(x, y),  

x E X _ ,  

y E X _ ,  

y C X+ LJ {o}, 

xEX+.  
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The constructed covering Markov operator is almost disjoint when restricted to 

G x (X_ U {o}) and coincides with the product of the random walk (G, tt) and 

the chain on X+ U {o} when restricted to G x (X+ U {o}). For the chain on 

G x (X_ U {o}) the Poisson boundary is F_ = G × F_ (see Example 4.3.4), 

whereas the Poisson boundary of the latter product chain coincides with the 

product of the Poisson boundaries F(G, #) and F+ [Mo]. Hence, the Poisson 

boundary of the operator P is the disjoint union 

= a x r_  U r ( a , , )  × r + .  

Thus, among the G-ergodic components in F are both discrete (on G x F_) and 

continuous (on F(G, tt) x F+) components. 

4.3.6 Remarks: 1. Example 4.3.4 shows that even finite covers of Liouville 

chains can have a non-trivial Poisson boundary. It also shows that if the deck 

transformations group G is non-amenable, then for "larger" (transient) quotient 

spaces the Poisson boundary can be "smaller" (countable vs. uncountable) than 

for "smaller" (recurrent) ones. In a certain sense this phenomenon is analogous 

to what happens with the spectrum of the Laplacian ~ on a covering Riemannian 

manifold. If the quotient manifold M is compact, then 0 E spec ~ if and only 

if the deck transformations group G is amenable [Br]. On the other hand, for 

non-compact M the spectrum spec ~ can contain zero even if G is non-amenable, 

so that again non-amenable covers of larger manifolds can be "more amenable" 

than covers of smaller manifolds. 

2. Examples analogous to Examples 4.3.4 and 4.3.5 can be also constructed 

within the class of simple random walks on graphs, and extended to covering man- 

ifolds using a correspondence between random walks on graphs and the Brownian 

motion on specially chosen Riemannian surfaces [Lt] (or such examples can be 

constructed directly for Riemannain manifolds). If all vertices of a graph X have 

the same degree, then the simple random walk on the product of X and a Cayley 

graph of a finitely generated group G coincides with the Car tes ian  p roduc t  

of simple random walks on X and G, i.e., its transition operator has the form 

P = aPx ® Ia + (1 - a)Ix ® Pa, where Px and Pa are Markov operators of 

simple random walks on X and G, respectively, Ix  and Ip are unit operators, 

and 0 < a < 1. The Poisson boundary of a Cartesian product is isomorphic to 

the product of Poisson boundaries of the factors [PW2]. 
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3. It would be interesting to understand better which covering operators (or, 

covering manifolds, for the Brownian motion case) have purely atomic non-trivial 

Poisson boundary. Notice that the Poisson boundary can not have non-trivial 

atoms for the Brownian motion on negatively curved simply connected manifolds 

with pinched curvature [KL] (see also [K10]) and for simple random walks on trees 

[BP], [Lr]. On the other hand, the Riemannian surfaces arising from Example 

4.3.4 lead to covers of hyperbolic space forms with an arbitrary deck group G and 

atomic non-trivial Poisson boundary. One can also construct an easy example of 

a universal covering manifold with atomic Poisson boundary (G. Mess). Excise 

from the Euclidean space ~3 interiors of 2 non-intersecting closed balls, and 

connect their boundary spheres by a "handle" S 2 x [0, 1]. Then the fundamental 

group of the resulting manifold is Z, and the Brownian motion on its universal 

covering manifold is almost disjoint (since R 3 is transient). It is unclear, whether 

a manifold with a purely atomic non-trivial Poisson boundary can be constructed 

within the class of universal covers of non-positively curved manifolds or even just 

within the class of Cartan-Hadamard manifolds (without any additional covering 

structure). See [Av], [Do], [KM], [LT] for examples of Riemannian manifolds with 

a non-trivial finite Poisson boundary. 

5. Cover ing  M a r k o v  operators and random walks on groups 

In this Section we consider interrelations between general covering operators and 

the simplest possible covering operators which correspond to random walks on 

countable groups. In §5.1 we show that for two classes of corecurrent operators 

(operators on a discrete state space and operators corresponding to diffusion 

processes) their Poisson boundary coincides with the Poisson boundary of an 

appropriate random walk on the deck group, so that the covering operator is in 

a sense approximated by the random walk on the deck group. It would not be 

reasonable to expect to have such an approximation for cotransient operators 

(their sample paths leaving almost surely the orbit of any finite measure set), 

and examples of almost disjoint operators (§4.3) show that, indeed, there are 

cotransient operators such that their Poisson boundary can never serve as the 

Poisson boundary of a random walk on the deck group. 

Considering random walks on groups instead of general corecurrent operators 

makes proofs of results from Sections 2 and 3 much simpler. For reader's conve- 

nience we give these proofs in §5.2. In view of §5.1, this generality is sufficient to 
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deal with the Poisson boundaries of corecurrent diffusion processes. 

5.1 APPROXIMATION OF COVERING OPERATORS BY RANDOM WALKS ON 

GROUPS. 

5.1.1 We shall begin with corecurrent Markov operators on a discrete state 

space )( .  

THEOREM: Let fi: L ~ ( X ,  Cn)~ --~ be a corecurrent Markog operator on a count- 

able covering space X such that any two points from )(  communicate. Then 

for any reference point o E X there exists a probability measure p on the deck 

group G with the following property. The space of bounded P-harmonic func- 

tions H ~  ( X , P) and the space H ~  ( G, p) of bounded p-harmonic functions on 

the group G are isometric: for any bounded P-harmonic function its restriction 

onto the orbit Go ~- G is p-harmonic, and, conversely, any bounded p-harmonic 

function on the orbit Go can be uniquely extended to a bounded P-harmonic 

function. 

Proof." Corecurrence of the operator ~5 in combination with its irreducibility 

means that  a.e. pa th  of the corresponding Markov chain visits the orbit Go 

which we shall identify with the group G by using the map g ~ go. Now, it is 

a general fact from the theory of Markov operators that  the induced operator 

on a recurrent subset has the same space of bounded harmonic functions as the 

original one. For the reader's convenience we shall give a detailed argument 

which would also simplify understanding of a more complicated construction of 

Theorem 5.1.6. 

Let px, x E ) f  be the hitting distribution on the orbit Go "~ G corresponding 

to a start ing point x E J(. Then the family of measures p~ is G-invariant in the 

sense that  

Pg~ = gP~ Vx E )( ,  g E G ,  

and the harmonic measures on the Poisson boundary of the operator P satisfy 

the relation 

MEG MEG 

In particular, if x = o, then the measure v = vo satisfies the stationarity relation 

u = pu. Thus, for any bounded P-harmonic function f with boundary values f" 

on the Poisson boundary 

I(go) = (L = (L g.) = (L gp.) = Z p(h)(L gh ) = p(h)I( ho), 
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so that the restriction of any bounded/B-harmonic function onto the orbit Go ~- G 

is a #-harmonic function. 

Conversely, the measures ttx satisfy the relation 

Px = Z P(x'Y)#u -t- E p ( y ,  go)6g, 
y E X  \ Go g6.G 

where ~(., .) are transition probabilities of the operator /B. Thus, if u' = u' e is 

the harmonic measure on the Poisson boundary F ~ of the random walk (G, #) 

corresponding to the initial distribution 6~, then the measures u~ = #~u' on F t 

satisfy the identity 

Now, if f C L~(G, #) is a bounded #-harmonic function, and ] " -  the corre- 

sponding function on the Poisson boundary F ~, then its extension to )(  defined 

as  
^ Vl 

f(x) : ~ f(go)l~:c(g) : (f ,  ~) 
g 

is/B-harmonic. | 

COROLLARY: The Poisson boundaries of the operator/B and of the random walk 

(G, #) coincide. 

5.1.2 If the space ( ) f , ~ )  is non-atomic, the argument above is not applicable, 

because the probability to hit any countable set (in particular, the orbit Go) is 

zero. Nonetheless, if the operator 15 is the transition operator of a c o n t i n u o u s  

t i m e  Markov process with c o n t i n u o u s  p a t h s  on a topological covering space 

)(, then one can still construct a random walk on the deck group G with the 

same Poisson boundary. 

The construction below was first proposed by Furstenberg [Fu2] for the Brown- 

Jan motion on symmetric spaces and later generalized by Lyons and Sullivan [LS]. 

As it was proved in [Fu2] and [LS], for any bounded/B harmonic function its re- 

striction onto the orbit Go is #-harmonic for the constructed measure #, so that 

the Poisson boundary F(/B) is a quotient of the Poisson boundary F(G, #). In 

fact, one can show that these Poisson boundaries coincide [K6]. For the sake 

of completeness we shall reproduce here the argument from [K6] (in a slightly 

modified form). Note that yet another discretization procedure was proposed by 
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Ancona [An]. In his construction the operator P and the random walk (G, #) 

have the same positive harmonic functions. 

5.1.3 Let )( be a topological space with a properly discontinuous action of a 

countable group G, and let/5: LOO()~, ffL),--~ be a Markov operator which is the 

time 1 transition operator of a G-invariant continuous time Markov process on 

)( with (almost surely) continuous sample paths. For a closed set A C )( and a 

A ¢(x, A) be the corresponding h a r m o n i c  m e a s u r e  on the point x ~ A let e~ = 

boundary OA, i.e., the distribution of points where trajectories starting from the 

point x for the first time meet the set A. We shall impose on the operator P the 

following condition 

(Har) There exist two sets E C V C -~ such that  

(a) The set E is compact, ff~(E) > 0, and for any point x E X a.e. 

trajectory starting from x visits the union Ug gE; 

(b) The set V is open; 

(c) The translations gV, g E G of the closure V are mutually disjoint; 

(d) For all points x E E the harmonic measures ~Cv on the complement 

CV of the set V have mass 1, are mutually absolutely continuous, and 

there exists a constant C > 0 such that 

Cv <_ c¢~v V x, y E E C x 

(a H a r n a c k  inequal i ty) .  

5.1.4 We shall now describe a discretization procedure for the operator ,P (or, 

more precisely, for the continuous time Markov process on ~" with sample paths 

= {~(t)}t>0). Let us fix a reference point o E E. For a point x e Ug gV let 

g(x) E G be the group element uniquely determined by the condition x E g(x)'ff, 
and let Vx = g(x)V. 

Let (Rn)n>l and (S,~),~>o be the Markov stopping times of the process {~t} 

defined as 

o , 

So(~) = min{t > O: ¢(t) E ) i \V~(o )}  , ~(0) E Go, 

and 

Rn(~) = min{t > S, - I (~) :  ~(t) E U g E }  
g 

S,~(~) = min{t > R.(~): ~(t) E X \ V~(R.)} . 
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Put also 

g~(~) = g(~(R~)) e G .  

Let a = (an)n>z be a sequence of i.i.d, random variables which are inde- 

pendent of  the process {~(t)} and have the Lebesgue measure on the unit interval 

(0, 1) as their common distribution. Put  

N o ( ¢  = 0,  

and for k > 1 by induction 

1 deW.o, CVg o) 
Nk(~,a) = min{n > Nk-l :  a~ < ~ ds(~(Rn),GVg.o) (~(S , ) )} .  

Now for every point x C )( let 

P~(g) = ~:P [gN1 = g] 

be the probability measure on G which is the distributions of the first coordinate 

gN1 of the random G-valued sequence (gN~)k_>l for the sample paths ~ starting 

from x. Denote by # = #o the probability measure on G corresponding to the 

point o. 

6.1.5 The measures #~ can be also described in the following way. Start with 

the  distribution 6~. If x E Go, balaya9 e 6 u onto CVx (this corresponds to the 

stopping time So). Now apply to the resulting measure Ao the following recurrent 

procedure (we describe the inductive step for an arbitrary measure )~,~). Balayage 

A,~ first onto U9 oE (it corresponds to the stopping time R,~). Let )~ ,  g E G be 

the restrictions of An onto the sets gE, and Agn be the balayage of the measure 

A~ onto the set CVgo (it corresponds to the stopping time S~). Now put 

/~n -t-1 = E ('~gn --II"~gnl----"~c(ff°,Cggo)) 
C gEu 

and 

gEG 

Finally, the sought for measure #~ is presented as the sum 

l.tz = E Tn . 
n>O 
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5.I.6 THEOREM: Under condition (Hat) the space H°°(.~, P)  of bounded P- 

harmonic functions and the space H°~(G, #) of bounded #-harmonic functions 

on G are isometric: for any bounded P-harm°nic function its restriction onto the 

orbit Gx ~- G is #-harmonic, and, conversely, any bounded #-harmonic function 

on the orbit Gx can be uniquely extended to a bounded P-harm°nic function. 

In particular, the Poisson boundaries of the operator P and of the random walk 

(G, #) coincide. 

Proof." The general idea of the proof is basically the same as for Theorem 5.1.1. 

Clearly, the system of measures #~ is G-invariant (because the whole construction 

is G-invariant). Since balayage does not change the harmonic measure on the 

Poisson boundary, the measures #~ satisfy the identity 

In particular, if # = #o, and v = vo, then ~ = #v (the measure v is #- 

s t a t i o n a r y ) .  Thus, the restriction of any bounded ~B-harmonic function onto 

the orbit Go is #-harmonic. 

• The proof of the converse statement, that any bounded #-harmonic func- 

tion can be extended to a P-harmonic function is more complicated than in the 

discrete case. What  we are going to prove is that  all bounded #-harmonic func- 

tions are restrictions of P-harmonic functions, or, in probabilistic terms, that  

the Poisson boundary of the random walk (G, #) is a quotient of the Poisson 

boundary of the operator P. By the argument in the first part of the proof this 

would imply t h a t  these Poisson boundaries in fact coincide. 

First of all note that  for a given gN~ = g the distribution of ~(SN~) is the 

measure e(go, CVgo) which depends on the value of g only, so that  gN~ is the 

(Markov) random walk on the group G governed by the measure #. Thus, the 

random walk (G, #) is obtained from the Markov process {~(t)} on )~ as a result 

of the following series of consecutive measure preserving mappings of Markov 

processes: 
1 

3 
) {(gNu}. 

On the first step we obtain a discrete time process with the state space )(  x )( ,  

then we add the sequence {a ,} ,  pass to the subsequence of times (Nk), and 

finally take the images gNk = g(~(RNk)). The processes obtained on the steps 
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(1) and (2) are evidently Markov, because the stopping times R,~ and Sn are 

Markov and the sequence ( ~ )  is i.i.d, and independent of the process {~(t)}. 

The process obtained on step (3) can be considered as the process induced by 

the process (~(Rn), ~(S,~), (~n) on the recurrent set 

,   (goo, CV  o) 
t a'~ < -C de(~(Rn), CVg~o) 

Recall that the Poisson boundary of a Markov process (Zt)t>o (i.e., the 

space of ergodic components of the shift in its state space) is the factor-space 

of its path space with respect to the measurable envelope of the s t a t ionary  

equivalence relation: two trajectories (Zt 1) and (Z~) are equivalent iff there 

exist T1,T2 > 0 such that Z¢r~+ t = Z~2+t for all t > 0. 

We have to show that each of the mappings (1)-(4) does not extend the 

Poisson boundary, so that the Poisson boundary of any subsequent process is a 

quotient of the Poisson boundary of the preceding one. 

If two sample paths {~: } and {~  } are stationary equivalent, then the corre- 

{~(Rn), ~(S,~)}, i = 1, 2 also are. The mapping (2) does not sponding sequences i 

change the space of bounded harmonic functions (an are independent, hence the 

transition probabilities of the obtained process do not depend on a~). On step 

(3) we get an induced process on a recurrent set, hence the Poisson boundary 

does not change on this step either. Finally, on step (4) the new Markov process 

is obtained by factorizing the state space of the preceding one by the map 

so that the Poisson boundary of the new process must be a quotient of the Poisson 

boundary of the old one. | 

5 .2  RANDOM WALKS ON GROUPS. 

5.2.1 The simplest possible covering Markov operator is one with the trivial 

quotient operator P on a trivial (i.e., consisting of a single point) space X. In 

this case the covering space ()(, ~ )  can be identified with the deck group G, 

where the measure ~ is the Haar (counting) measure mc  on G. The covering 

operator P is G-invariant, which means that it has the form P = P ,  with 
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where # is a probability measure on G. In other words, /5 = p~, is the Markov 

operator of the (right) r a n d o m  walk  on the group G determined by the measure 

#. 

Obviously, the trivial Markov operator on the one-point space satisfies con- 

ditions (Irr) and (Rec), and the random walk operator P ,  satisfies condition 

(Stat) with respect to the Haar measure rna. The reversed operator of P ,  is 

the operator Pu = Pf~ corresponding to the reflected measure f~(g) = ~(g-1). 

Since the state space G is countable, the operator P ,  has a Poisson kernel, i.e., it 

satisfies condition (P). Let F = r(a, u) be the Poisson boundary of the operator 

Pu, and u = u~ - -  the harmonic measure on F corresponding to the initial distri- 

bution 6~ concentrated on the identity e of the group G. Then for an arbitrary 

initial distribution 0 on G the corresponding harmonic measure on F has the 

form 

In particular, since u = v, ,  the measure v is # - s t a t i o n a r y ,  i.e., L, = #v. 

Let S = S(#) be the semigroup generated by the support of the measure #. 

Then for any point g C G the support of the measure type [~g: Pi,] is gS.  Thus, as 

it follows from Proposition 1.2.5, the harmonic measures ug 1 and ugh, gl, g2 E G 

are non-singular if and only if g l S  n g2S ¢ ~, i.e., g~lg2 E S S  -1.  If S = G, then 

the measure # is called n o n - d e g e n e r a t e .  In terms of the corresponding random 

walk non-degeneracy of # means that any two points in G communicate, so that in 

this case the measure u is quasi-invariant and equivalent to the harmonic measure 

type v on the Poisson boundary F, and the operator P ,  satisfies condition (W). 

See [KV] and [KT] for a detailed discussion of properties of the Poisson boundary 

of random walks on discrete groups. 

5.2.2 L e t / ~  be the product measure obtained by multiplying an infinite num- 

ber of copies of the measure /~ with the index set Z. Then the measure ~ p Z  

in the path space G z is the image of the product ff~ x # ~  under the map 

(g, {hn}) ~ {xn} defined as 

g , n = 0  

xn = g h l . . . h n  , n > 0 
--1 - 1  

gh o . . . h n +  1 , n < O 

(so that xn = x n - l h n ) .  In other words, the initial position g = x0 and the 

increments hn = x~11x,~ uniquely determine the path {x,~}. 
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5.2.3 THEOREM [K8], [BL]: For any non-degenerate probability measure p 

on a countable group G the action of the group G on the product of Poisson 

boundaries of the Markov operators P, and Pp is G-ergodic. 

Proof: Let b n d  and b n d  ~ be the maps from the bilateral path space to the 

Poisson boundaries F and F of the operators P ,  and P~, respectively. Since the 

measure p is non-degenerate, operators P~, and Pp satisfy condition (P'), so that 

by Theorem 1.4.3 the image of the type of the measure m Pz in the bilateral path 

space is equivalent to the product of harmonic measure types on the product of 

the Poisson boundaries F and F. 

Let f be a G-invariant function on the product of the Poisson boundaries, 

and 

F(x) = f ( b n d ' ( x ) ,  bnd(x))  

be the corresponding function on the bilateral path space. Since the function f 

is G-invariant, the value F(x) depends on the increments h~ = x~11xn only. On 

the other hand, the function F is shift invariant, so that it determines a shift 

invariant function in the space of increments, which is impossible because of the 

ergodicity of the Bernoulli shift in the space of increments. | 

5.2.~{ THEOREM: Let ~ be a G-invariant quotient of the Poisson boundary of the 

random walk (G, p) on a countable group G, and ~ be a non-negative measurable 

function on the quotient F~ such that the measure ~v ~ is p-stationary. Then 

is constant a.e. with respect to the measure v~. 

Proof For notational simplicity we shall consider here only the case when the 

quotient F~ is the boundary F itself (in the general situation the proof goes along 

the same lines). 

Stationarity of the measure ~v means that almost everywhere 

~(~) - d(~ ' ) (~)  - dP(~")(~)  = ~ dg(~----A) (~) p(g) 
dL, dv dv 

dgv 
= Z p(g). 

In other words, f~(g) = ~(g-17) is a harmonic function of the cond i t iona l  

r a n d o m  walk on G conditioned by the point 7, or, ~ is a harmonic function of 

the Markov chain on the Poisson boundary F of the random walk (G, p) with the 

transition probabilities 

dgv 
= p ( g )  
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This chain preserves the measure v, because 

Z"(g)dg , , = 

and its reversed chain has the transition probabilities 

p(~/, g.~) = p(g% g) dr(7) _ ~(9) 
dv(g~) 

(in other words, the reversed chain is the ~t-process on F [Fu2]). 

Thus, the unilateral path space of this chain can be obtained from the 

unilateral space of increments of the random walk (G,/~) by the formula 

7,~ = b n d ( T n h ) .  

In other words, ~/0 is the boundary point of the path (e, hi, hlh2, . . . ) ,  71 = 

hltTo is the boundary point of the path (e, h2, h2h3,.. .),  and so on, where 

h = (hi, h2 , . . .  ) are sequences of i.i.d, increments h,~ with distribution #. 

Consider the measurable set 

At = {7 e F: ~o('y) _> t} C F t > 0,  

and suppose that  v(At) > 0. Then, as it follows from the Poincar6 recurrence 

theorem applied to the shift in the space of increments, a.e. path (%} eventually 

hits the set At. Let r be the corresponding stopping time, and v a n  = min{~-, n}. 

Then harmonicity of the function ~0 implies that  

so that  a.e. 

~(~) > E ~ ( ~ )  > t ,  

and the function J is a.e. constant. | 

5.2.5 THEOREM: Let ~ ~ ( be two measurable G-invariant partitions of the 

Poisson boundary F of the random wa/k (G, #) on a countable group G deter- 

mined by a non-degenerate measure #. Then the Radon-Nikodym cocycles of 

the measure types ~ and v; are cohomologous over the space r ¢ if  and only if  

Proo~ Since the measure # is non-degenerate, the measures v~ and v; are 

equivalent to the measure types ~ and v~, respectively, so that  we can consider 
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the Radon-Nikodym cocycles of the measures u 4 and u¢. Their equivalence over 

the space F ¢ means that there is a measurable function ~ on the space F ¢ such 

that a.e. 
dgu 4 dg~pv¢ 
du~ (74) - d~u¢ (3`¢) V9 E G .  

Since the measure u4 is ~t-stationary, the measure ~ou¢ is also /~-stationary, so 

that ~ = 1 by Theorem 5.2.4, and a.e. 

dgu4 4 dgu¢ , ¢, 

Thus, the conditional walks determined by the quotients F 4 and F ¢ coincide, so 

that ~ = ¢. | 

5.2.6 In the case when the measure p has finite e n t r o p y  

H(#)  = - E #(9) log #(g) 
g 

another proof of Theorem 5.2.5 can be obtained by using the notion of the 

differential entropy 

dhlu Eu(F4, u 4) = f log --d-~-u (bnd4 (h)) dl.t°°(h) 

of the quotients ( r  4, u4), where b n d  4 is the map from the space of increments to 

the quotient F 4 of the Poisson boundary by a G-invariant partition ~ [Fu2], [K1]. 

If H(#)  < ~ ,  then 

(a) The differential entropy Eu(F~, u 4) is finite for any partition ~; 
dxn u ~ 

1 log ~ ( b n d  (h)) ~ Eu(r~, re) almost everywhere and in the space (b) n 
La(IP°); 

(c) Eu(F 4, u 4) _< E~,(F ¢, u¢) for any two partitions ~ ~ ¢, and the equality hold 

iff~ = 4. 

Thus, if ~ # ~, then almost everwhere 

_ [ dxnu ¢ ¢ dx,~u~ 4 ]  Fn(h) = nl log ---d-~v~ (bnd  (h)) - log ---d-~-(bnd (h)) --* oo .  

On the other hand, if the Radon-Nikodym cocycles of the measures v~ and u¢ are 

equivalent, then there exists a measurable function f on the space of increments 

such that 

Fn(h) = ~ (f(T'~h) - f(h)) , 
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which is impossible by the Poincard recurence theorem applied to the Bernoulli 

shift T in the space of increments. 

5.2.7 THEOREM: Let  F be the Poisson boundary o f  the random walk (G, tt) 

de termined by a probabili ty measure # on a countable group G. Then  an e lement  

c from the center Z(G) of  the group G acts on G t r i v ia l l y i fand  only f f c  E S S  -1, 

where S = S(#) is the subgroup generated by the support  o f  the measure #. 

Proof." As it follows from Proposition 1.2.5, the measures u and cu on the Poisson 

boundary are singular if and only if c ~ S S  -1. Thus, if c ~ S S  -1,  then the action 

of c is non-trivial. Suppose that c E S S  -1, so that  the measures u and ~ are 

non-singular. Since c E Z (G) ,  

~tC// = C~tP = eu, 

so that  the measure cu is #-stationary. Thus, the measure v A cu is also #- 

stationary, which by Theorem 5.2.4 implies that u -~ cv. The same argument 

applied to c -1 implies that u -~ c - i v ,  i.e., cv -~ v. Hence, cu ,- u, and by 

Theorem 5.2.4 cu = v. Thus, for u-a.e. 7 E F and any g E S 

dg__g__g• dgcu,  , d g v ,  , 
(c-1~)  = ~ )  = - - j ; -~ )  , 

so that the points c-13, and "r determine the same harmonic functions on S, and 

c-1"~ = % II 

Remark: The proof of this theorem is very close to the proof of a similar state- 

ment in [Fu3] (Theorem 11.2). See also [Gul], [au2] for triviality of the Poisson 

boundary of random walks on nilpotent Lie groups. Note that the question about 

triviality of the Poisson boundary of the random walk (G, #) on a general nilpo- 

tent Lie group G (without any absolute continuity assumptions on the measure 

#) is still open. 
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